Design and Development of a Coffee Blending Device with Carbon Monoxide (CO) Level Identification Based on Artificial Neural Networks

Yul Antonisfia a, Roza Susanti a,b,1, *, Efendi a, Sir Anderson a, Fitri Anisa a

a Department of Electronics Engineering, Politeknik Negeri Padang, West Sumatera, Indonesia
b Electrical Engineering Department, Faculty of Engineering, Universitas Andalas, Padang City, West Sumatera, Indonesia
1 rozasusanti@pnp.ac.id
* corresponding author

1. Introduction

Coffee is one of the agricultural commodities widely enjoyed by the public. Products made from coffee are highly popular among consumers, leading to an increasing number of community businesses that offer coffee-related products [1][2]. Coffee has health benefits, and regular consumption can reduce the risk of several diseases [3][4]. Consumer awareness of health and coffee flavour has an impact on the demand for high-quality coffee [5]. Improper coffee processing can affect the coffee powder quality, which should adhere to the SNI 01-2983-1992 standard [6]. To enable the evaluation of well-processed coffee, one approach is to consider the carbon monoxide (CO) level in Arabica, Robusta, and Liberica coffee. The research uses the Backpropagation artificial neural network method with 2 hidden layers, including 4 input layers and 3 output layers, to identify the tested coffee varieties. The highest carbon monoxide (CO) levels were found in Arabica Special coffee, with an ADC level of 662 carbon monoxide gas. The lowest carbon monoxide (CO) levels were detected in Liberica coffee, with an ADC level of 105 carbon monoxide gas. Coffee identification was carried out using an artificial neural network method with a success rate of 98% for Liberica coffee, 100% for Arabica coffee, and 98% for Robusta coffee.
This study involves the development of a coffee-making device that identifies CO levels using electronic sensors, specifically aroma sensors. The system testing utilizes LabVIEW Virtual Instruments (Vi) programming. The device's mechanism is designed to take into account the fineness level, and the CO identification will be synchronized with the fineness level of each coffee. This research is conducted with the aim of designing a coffee content detection device by determining the carbon monoxide (CO) level in Arabica, Robusta, and Liberica coffee. It seeks to identify the best coffee for consumption based on the carbon monoxide (CO) content using an Enose sensor. It utilizes the Backpropagation artificial neural network method with 2 hidden layers to identify the tested coffee varieties.

2. Research Methodology

An Electronic Nose (E-Nose) is an instrument capable of recognizing complex characteristic information [17][18][19]. The E-Nose is the result of responses from multiple sensors with partial specificity and the aroma reactions to various volatile compounds, functioning in a manner similar to the human nose [20][21]. The working mechanism of the nose in animals or humans is based on identifying gases emitted by volatile organic compounds (VOC) in the air, recognized based on previously stored aromas in the brain [22]. There are types of electric nose sensors.

The MQ135 sensor is sensitive to compounds such as NH3, NOx, alcohol, benzene, smoke (CO), and CO2. Its analog resistance value changes when exposed to gases. Due to its practicality and low power requirements, this sensor is suitable for use as a pollution hazard indicator [23]. The MQ-7 gas sensor is used in equipment to detect carbon monoxide (CO) gas in automobiles, industries, or everyday life. This sensor has high sensitivity to CO, is long-lasting, and stable. To measure accurately, it uses a 5V AC/DC heating power supply and a 5V circuit power supply. Its measurement range is between 20 and 2000 ppm [24]. The TGS 2602 sensor has low alcohol concentration and high sensitivity to air contaminants from outdoor gases like ammonia and H2S. Due to its small chip size, this sensor only requires a heating current of 56mA and is mounted in a TO-5 component package [25]. The TGS 2620 sensor has high sensitivity to organic solvent vapours and other easily evaporating vapours, making it suitable for organic vapor detectors/alarms. Due to the miniaturization of the sensing chip, the TGS 2620 requires only 42mA of heating current and is housed in a standard TO-5 package [26].

In addition to being a beverage associated with bitterness, coffee is also known for its acidity. That's why some people are reluctant to drink coffee because they fear that its acidity may affect their health. After coffee is roasted, there is a gas formation process that occurs within the coffee beans [27]. Roasted coffee may taste less enjoyable because the carbon monoxide content tends to remain within the coffee. Degassing is the continuous release of CO gas (naturally) over a specific period of time [28].

The physical description of the testing equipment can be seen in Figure 1. Part A is where coffee beans are placed for grinding into coffee powder. Part B serves as the location for attaching all E-
nose sensors. Meanwhile, Part C functions as the container used to collect the ground coffee during the testing process. Part D consists of a monitor screen that displays the output values obtained from four sensors, namely MQ-135, TGS 2602, TGS 2620, and MQ-7.

In simple terms, the Artificial Neural Network (ANN) JST Backpropagation process can be divided into two parts, which are training and testing. Training is the learning process of the artificial neural network system, where it learns the input values and how to map them to the output until an appropriate model is obtained [29][30]. Additionally, testing is the process of checking the accuracy of the model obtained from the training process. An example of a backpropagation network with two hidden layers can be seen in the following figure 2.

Figure 2. Backpropagation artificial neural network 2 hidden layers

The results of training in MATLAB with ANN JST Backpropagation with 19 epochs have approached the predicted target value. A regression value of 1 indicates a good fit between the input data and the target data, as seen in Figure 3.

Figure 3. Display of artificial neural network training

3. Results And Discussion

In circuit design, the economic value of the components used must be taken into consideration. Before creating the circuit and system, a block diagram is first designed. This is to achieve the goal of having a circuit that leads to the desired outcome, as illustrated in the block diagram shown in the figure 4.
Based on Figure 4, the functions of each block diagram are as follows: Sensors are used to identify the formation of carbon monoxide (CO) gas is MQ-135, MQ-7, TGS 2602, and TGS 2620. The Arduino microcontroller is used for programming to display the gas reading results to the output. The monitor is used as a display medium for the values of the generated gas. Artificial Neural Network is the method used in this research. The type of ANN used is backpropagation with 2 hidden layers.

To easily understand the system's operation, you can refer to the system flowchart diagram shown in the figure 5.

Figure 4. Block Diagram

Figure 5. System Flowchart
The working principle of this device is as follows: when the AC motor is activated, and the roasted coffee is ground into coffee powder, the coffee is left in the coffee container. The gas sensors, including MQ-135, MQ-7, TGS 2602, and TGS 2620 used in this research, will identify the various gases formed after the coffee grinding process. The Arduino software will program the sensors to identify carbon monoxide (CO) gas. The gas data is used as input data for the identification process using artificial neural networks in the Matlab software, and the identification results are then displayed on the monitor.

Data was collected on the sensor responses to different types of coffee, including arabica, liberica, and robusta, with varying roasting levels, namely light, medium, and dark. The measurements were taken over a duration of 1 minute and 10 seconds.

In Figure 6 and 7, it can be observed that the highest carbon monoxide (CO) level was found in special Arabica coffee with a carbon monoxide gas level of 662, while the lowest carbon monoxide (CO) level was detected in Liberica coffee with a carbon monoxide gas level of 105.

For the training sample data collection, three types of coffee were used: Robusta, Arabica, and Liberica. The sampling process was conducted by collecting 70 data samples from the MQ-135, TGS 2602, TGS 2620, and MQ-7 sensors. All data was fed into the artificial neural network for training to obtain weight and bias values for coffee identification using the Artificial Neural Network method.

Yul Antonisfia et.al (Design and Development of a Coffee Blending Device with Carbon Monoxide (CO) ...
The success rate in identifying Arabica coffee powder reaches 100%.

\[
\frac{70}{70} \times 100\% = 100\%
\]

The success rate in identifying Robusta coffee powder reaches 98%.

\[
\frac{69}{70} \times 100\% = 98\%
\]

The success rate in identifying Liberica coffee powder reaches 100%.

The results achieved showed the ability to identify Liberica coffee with a success rate of 98%, Arabica coffee with 100%, and Robusta coffee with 98%.

4. Conclusion

The highest carbon monoxide (CO) levels were found in Arabica Special coffee, with an ADC level of 662 carbon monoxide gas. The lowest carbon monoxide (CO) levels were detected in Liberica coffee, with an ADC level of 105 carbon monoxide gas. The Artificial Neural Network method can identify Liberica coffee with a success rate of 98%, Arabica coffee with 100%, and Robusta coffee with 98%.

Acknowledgment

Thank you to Padang State Polytechnic and all parties who have assisted in this research.

References

Yul Antonisfia et al. (Design and Development of a Coffee Blending Device with Carbon Monoxide (CO) …)

