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1. Introduction  

From time immemorial till date, human actions, processes and indeed scientific explorations have 

been predicated on the premise of cause and effect. In the primordial era, the savaged and primitive 

man sought ways to articulate and uncover this phenomenon of cause and effects; and not having 

equipment, enough facts or the sine-quo-non to ascertain this phenomenon of knowing what actions 

(causes) that produces the effects especially in incidences that were agonizing to him such as certain 

ebullitions of some sickness’s concomitant with mysterious deaths. Thus, the ability to know the 

right action to influence his environment or predict his future made man an idiosyncratic specie from 

the rest of the animals. Thus, driving the savaged man from his initial state of higgledy-piggledy to 

embrace the practice of magic, astrology, and certain fetish ways to achieve the causation 

phenomenon in order to overcome his bewildered state. Gradually, as societies evolved and 

advanced, and mankind himself advanced from his primitive and savaged state to his current state of 

scientific and technological advancement. Thus, establishing his hegemony on earth over and above 

every other specie; the same motives of trying to influence his environment and predict his future 

still stands. Nonetheless the methods of achieving it have evolved; as magic arts wanes to scientific 

logic, and astrology metamorphosed to astronomy and other technological innovations such as 

computer predictions, simulations etc., became the modern genies that are aberrations from the fetish 

ways of predicting the future. Albeit, in this current era, the science of trying to ascertain causality 

or causation in human processes and actions is still a daunting and a nontrivial task; as the traditional 
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scientific way of ascertaining this act is resident with the randomized controlled experiment or 

randomized controlled trial (RCT) method. This RCT method and idea is credited to Fisher [1]. Thus, 

this standard framework for causal discovery known as RCT always involves setting some (usually 

half) of the sampled population of study and given them a treatment (an intervention) under the same 

conditions, while the second half of the study population is left untreated (not intervened on) or 

controlled under the same or similar conditions, in order to slay any possible confounding or lurking 

variable, which is often the factor that jeopardizes a proper juxtaposition of these two sampled 

population in the RCT experiments. As fascinating as this method of RCT is, there are events and 

circumstances that makes this kind of experiments too expensive, infeasible or even unethical to 

perform. A good instance is to perform a RCT on a hypothesize query that seeks to uncover the health 

benefits, or otherwise of smoking on a certain population. This is an unethical experiment to conduct 

under RCT, because it would involve setting half of the population under review to smoke (treated) 

and the other not to smoke (controlled). Hence, with this obstacles posed by RCT, many researchers 

have resorted to the discovery and inferring of causal structures from purely observational dataset, 

or from a combination of both data and RCT [2, 3]. 

However, in spite of the successes recorded by causal models using observational dataset, many 

causal models designs are not tested or validated for correctness as far as the extant literature would 

reveal. In fact, a recent study by Tennant, Murray [4], that investigated model testing in healthcare 

sector, revealed that among the 200 articles reviewed, not a single one of them was tested or validated 

for correctness.  Thus, if these models are to be further used in the estimation or evaluation of causal 

inference of such projects, the estimation results may leave a lot of room for dispute and doubt. Thus, 

in this study, we have designed an application-based novel SCM from the background knowledge 

gotten from the American university of Nigeria (AUN), Yola’s project on the letter identification 

subtask of Early Grade reading Assessment (EGRA) program on Strengthen Education in Northeast 

Nigeria (SENSE), which was sponsored by the United State Agency for International Development 

(USAID), which occurred between 2021 to 2202. We employed the conditional independence test 

(CIT) criteria for the testing of our SENSE-EGRA SCM correctness and the results shows a near 

perfect model. See Table 1. 

1.1 Study Contributions 

The main contributions of this work is as follows: 

(i) Theoretical insight into structural causal model (SCM) framework, 

(ii) Development of an application-based novel SCM for the SENSE-EGRA dataset 

(iii) Model correctness validation using the conditional independent test (CIT) criteria 

(iv) Experiment Reproducibility. See appendix links to data and CIT codes for reproduction 

of the experiment. 

1.2 Study Structure 

In section 2, the basic theoretical concept of causal model is discussed. Section 3 discusses direct 

acyclic graphs and their relations to causality and the Bayesian network factorization. Section 4 

presents some of the main assumptions driving SCMs. Section 5 presents our experiment setup as its 

relates the design of our SENSE-EGRA SCM. Section 6 presents our model correctness validation 

testing results using the CIT criteria. And finally, section 7 wraps up the study and give direction on 

future work. 
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2. Basic Concept of Causal Models 

In this section, the various forms of causality are defined, followed by the two major framework used 

for causality, which are the structural causal model (SCM) framework and the potential outcome or 

Rubin causal model (RCM) framework; with a juxtaposition of both frameworks. The section 

concludes with how causal interventions are executed in dataset with the SCM framework.  

2.1 Causal Model: It is an abstraction of mathematics that describes quantitatively the relations of 

causality that exist among variables in an observable dataset [5]. These mathematical models are 

derived from the domain and background knowledge embodied in the DAG, and they evince  the 

causal relations within the observable dataset [6-8].  

2.2 Types of Causal Models: Two types of casual models exists for causality, which are (i) 

Structural causal model (SCM) proposed by Pearl [7] and (ii) Potential outcome framework also 

called Rubin causal model (RCM) [9, 10]. However, the study scope is limited to the SCM and not 

the RCM.  

2.2.1 An SCM: The framework for causality based on SCM gives a holistic understanding of the 

theory of cause and effect. It is composed of two parts: the causal diagram (or graph) that encodes 

background domain knowledge and assumptions of the distribution (the dataset), and the Bayesian 

network factorization (BNF) or structural equations part, which models or algorithmised 

(mathematically) the relations among the study variables based on the causal assumptions from the 

graph [5, 11-13]. This works focuses more on the SCM with a more detail explication of the 

connections of the graphs and the dataset in subsequent sections. 

2.3 Causal Relations with SCM: Determining the causal relations that exists among variables in an 

observational study in a purely probabilistic distribution is an ambiguous and daunting task. If a 

conditional probability distribution such as 𝑃(𝑌|𝑋) for instance, represent the conditional probability 

distribution of obesity (𝑌) given a particular level of sugar intake (𝑋). This distribution relation is 

ambiguous in terms of an experimental setting (RCT) where sugar intake was ascertained by 

randomization or by merely through an observational process. In his book on causality, Pearl [7] in 

order to differentiate the mere conditional observational probability distribution (I,e., statistical 

association/correlation) and interventional conditional probability distribution (which is a causal 

association), introduced the 𝑑𝑜-operator of the do-calculus to differentiate interventional  distribution 

from observational’. Hence, the expression 𝑃(𝑌|𝑋) can now be regarded as mere conditional 

observational association which depict how the probability of 𝑌 (obesity) will change, if someone 

were to observe the sugar intake (𝑋). While 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) is regarded as the interventional 

conditional probability distribution (which is a causal association), depicting the probability of 

obesity (𝑌) given that a measure unit of sugar (𝑥) were taken (purposefully and not observed). 

Hence, making the observation and intervention distinct: 𝑃(𝑌|𝑋 = 𝑥)  ≠ 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)). The 

practical difference between the two may be the existence of a variable(s) 𝑍 (individual gene tar for 

instance) that may be confounding the relations, which exists in some back-door path: See figure 1 

DAG for confounding relations. In the intervention distribution, the causal effects is determined 

given difference values of the treatment/control 𝑋 (i.e., when sugar is taken and when sugar is not 

taken) and this can be measured and compared in the interventional distribution, written as: 

𝑃(𝑌|𝑑𝑜(𝑥 = 1)), and 𝑃(𝑌|𝑑𝑜(𝑥 = 0)) where 1 and 0 stands for treatment and no treatment (control) 

respectively for an individual instance, which is called the individual treatment effect (ITE). Thus, 

when this process involves all sampled or all instances of the population, the causal intervention is 

defined in terms of the average treatment effects (ATE) for the instances of the population. Written 

in terms of the expectation as: 𝜏(1,0) = 𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)]. Also, conditional 

average treatment effects (CATE) can be taken for subpopulation group in a similar manner as well. 

Thus, it can be seen that this kinds of intervention model’s the RCT experiment that determines 

causality in observational dataset [14, 15]. In spite of the clear distinction describing and 
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differentiating these two processes by Pearl [7], not every dataset can be neatly categorized into this 

distinction of observational and interventional dataset, as some experiments may not clearly or 

wholly show the value of the variable that is intervened on in the dataset. Thus, due to this two 

distinctions, which are obfuscated in the distributions, it has become imperative to represent causal 

models explicitly in terms of directed acyclic graph (DAG) or simply causal graph as proposed by 

Pearl [14]. Causal graph in SCM are very essential component which make it easier to identify the 

causality from dataset; hence, we discuss them in the next section. 

 
Figure 1.  Shows a SCM with (b) intervention and without (a) an intervention 

3. Causal Graph 

In circuit design, the economic value of the components used must be taken into consideration. 

Before creating the circuit and system, a block diagram is first designed. This is to achieve the goal 

of having a circuit that leads to the desired outcome, as illustrated in the block diagram shown in the 

figure 4. 

This section presents causal graphs as is applicable in SCM. Fundamental concepts in graph such as 

the popular backdoor adjustment criteria and the Bayesian network factorization (BNF) are elicited 

and explicated. 

3.1 Causal Graph Composition: A causal graph (denoted as 𝐺 = (𝑉, 𝐸), consists of two or more 

nodes (also called vertices) representing a random variable sets (𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑉 = 𝑋1,  𝑋2, 𝑋3, … 𝑋𝑛 

and a number of connecting lines among the nodes called edges (𝐸). These random variables may 

include the observed and unobserved (if the exists) variable alongside the treatment and outcome 

variables. In figure 2: 1A is an undirected graph due to the lack of directional arrows on them. While 

1B the graph is directed because of the arrow direction. And 1C shows a directed graph with a cycle 

[16] and finally 1D shows and intervention graph on variable 𝐶.  A directed edge from 𝐴 to 𝐵 (written 

as: A → 𝐵) is interpreted as, B is caused by  A or (A is the potential cause of B) [5]. Hence, with a 

causal graph an hypothesized causal query can clearly be modelled through the causal pathways in 

the graph, and all dependent/independent relations as it relates all variables associated with the query 

are known. And this graph model can be factorized using the Bayesian network factorization or the 

structural equations; based on some assumptions to obtain a causal estimand of the conditional 

probability distribution from which it can be used with the observed dataset to ascertain the causal 

estimate of the hypothesized query [14, 17]. 

 

Figure 2. shows an undirected, directed, directed with cycle, and intervention graph 

A path in the graph is an oriented order of adjacent edges irrespective of the direction of the adjoining 

nodes. For instance, 𝐴 − 𝐶 − 𝐵 is considered as a path in figure 2 1A and 𝐴 ⟶ 𝐶 ⟵ 𝐵  is also a 

path in figure 2 1B. A directed path is that in which all edges are directed or pointing in the same 

direction. E.g., the path, 𝐴 ⟶ 𝐶 → 𝐵  in figure 2 1B is regarded as directed. Most causal algorithms 

work best with the directed acyclic graphs (DAGs) condition as shown in figure 2 1B and a few 

causal algorithms work with the cyclic graph condition as shown in figure 2 1C [5, 11-13]. 
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3.2 Three Cardinal Relations in Graphs: A descendant of a node 𝐴 is a node 𝐶 ∈ 𝑉, such that there 

is direct edge from 𝐴 to 𝐶 (written as: 𝐴 ⟶ 𝐶) in the DAG 𝐺. This corresponds to 𝐴 being an 

ancestor (parent of) 𝐶. The progenies (𝐴 and 𝐵) of a node 𝐶, are the nodes in 𝑉 with a directed edges 

connecting 𝐶, (designated as: 𝐴 ⟶ 𝐶 ⟵ 𝐵). This child and two parents relationship designated as 

𝐴 ⟶ 𝐶 ⟵ 𝐵, is also called a collider [18, 19] or immorality [8, 16] is the first basic relation that 

can exists among variables represented in DAG. A second relation exists called a mediator or chain, 

where a parent node 𝐴 (usually exogenous) that produces a child node 𝐶, where 𝐶 in turn produces 

another child 𝐵 (which is a grand descendant of 𝐴) [8, 14, 17]. finally, a third relationship exists 

where a node 𝐶, which is a single parent having two descendants 𝐴 and 𝐵 (written as: 𝐴 ⟵ 𝐶 ⟶ 𝐵) 

is called a fork or common cause confounder. Thus, these three relations (collider, chain/mediator 

and fork) are the three common relations that exist in an observational dataset and can be mirrored 

or expressed in a DAG, forming the building block or structure in causal graph for determining 

relationship (causal or associational) in an observational settings [8, 11, 14, 17, 20, 21]. 

3.3 Causal Connection & the Backdoor Adjustment Criteria in a Graph: D-separation and d-

connection are the processes that define a sets of variable 𝑉’s connectivity in a causal graph 𝐺 [21]. 

The 𝐷 in the d-separation and d-connection stands for dependency and it is a process of establishing 

independency or dependency from two or more variables that are independent or otherwise on a third 

variable 𝐶 in in a DAG which is a reflection in the dataset. For instance, in the case of a fork (𝐴 ⟵
𝐶 ⟶ 𝐵), or a chain/mediator (𝐴 ⟶ 𝐶 → 𝐵), the variable 𝐶 is a link between both 𝐴 and 𝐵. Hence, 

once you condition on the linking variable 𝐶, you will block or close the dependency relationship 

that exist between paths 𝐴 and 𝐵. That is to say, paths 𝐴 and 𝐵 will become independent conditioned 

on 𝐶, written as: 𝐴∐𝐵|𝐶. Albeit the reverse is the case, when it comes to the collider or immorality 

structure  (𝐴 ⟶ 𝐶 ⟵ 𝐵), as the paths A and B are already independent or blocked in their current 

state (i.e., 𝐴∐𝐵 ∤ 𝐶: 𝐴 is independent of 𝐵 not conditioned on 𝐶), without the need for conditioning 

on any variable including 𝐶. Hence, once you condition on 𝐶, a relationship between 𝐴 and 𝐵 is 

induced (i.e., 𝐴 and 𝐵 becomes dependent conditioned on 𝐶. written as:  𝐴 ∐ 𝐵|𝐶). This process of 

blocking the flow of unwanted association on non-causal pathways in order to determine causality 

only through a causal pathway is called the backdoor adjustment criteria [22, 23]. Pearl [21], defined 

the process of d-separation and d-connection for backdoor adjustment criteria in a DAG 𝐺 formally 

as follows:  A path connecting two variables 𝐴 and 𝐵 is said to be d-separated or blocked if and only 

if: (i) the path contains a fork such as : (𝐴 ⟵ 𝐶 ⟶ 𝐵) or chain/mediator such as: (𝐴 ⟶ 𝐶 → 𝐵) that 

has been conditioned on 𝐶. Written as: (A∐𝐺  B|C), and (ii) the path between 𝐴 and 𝐵 contain a 

collider on 𝐶, such as (𝐴 ⟶ 𝐶 ⟵ 𝐵)  that has not been conditioned on, alongside any descendant 

of collider 𝐶, that is not conditioned on as well. Written as: (𝐴∐𝐺𝐵 ∤ 𝐶) or just 𝐴∐𝐺𝐵 . This same 

process of d-separation and the backdoor adjustment criteria from the graph 𝐺 can be utilized to 

determine dependencies/independencies of variables in the distribution (or dataset), which is a 

factorization of the d-separation in the graph using the Bayesian Network Factorization (BNF). The 

d-separation in the distribution is written as: A∐𝑝 
B|C, or A∐𝑝 

B|C for independency and 

dependency conditions respectively, similar to the d-separation in the graph with the subscript  P to 

distinguish it from the graph’s d-separation criteria, which is represented by the subscript G. This can 

further be used to determine causal relations in the distribution as whole.  

On the other hand, a path from 𝐴 and 𝐵 through 𝐶, is said to be d-connected, unblocked or open 

when it is not d-separated [17, 21]. 

3.4 The Bayesian Network Factorization (BNF) in Graphs: The DAGs are interpreted in two part. 

i.e., the probabilistic and the causal interpretations. The probabilistic inference sees the directional 

arrows on the DAG 𝐺 as showing a probabilistic dependences or associations among the variables 

of study, while the lack of arrows corresponds to the conditional independence asserted by the study 

variables [24]. Based on some assumptions, the simplest being the Markovian condition, which states 

that each study variable is considered independent of all its non-descendants in the graph with the 



262 International Journal of Advanced Science Computing and Engineering ISSN 2714-7533 

 Vol. 5, No. 3, December 2023, pp. 257-268 

 

Gabriel Terna Ayem et.al (Design and Validation of Structural Causal Model: A focus on SENSE-EGRA Datasets)  

exception of its direct parent. Usually written as 𝐴∐𝐵|𝐶. Hence, based on the assumption, the joint 

probability distribution function 𝑃(𝑣) = 𝑃(𝑣𝑖 , … , 𝑣𝑛) factorizes based on the BNF as: 

𝑃(𝑣) =  ∏ 𝑃(𝑣𝑖|𝑝𝑎𝑖)𝑛
𝑖           (1) 

Where 𝑣𝑖 = 1, … , 𝑛, 𝑎𝑛𝑑 𝑝𝑎𝑖 denotes the parent of the variable 𝑣𝑖in the graph  

Thus, based on the BNF of equation (1), the graph in figure 2:1B for instance, the probability 

distribution of it (i.e.,1B) can be factorized and summarized, based on the Markov assumption as 

follows:  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶)      (2) 

This contrasts the normal Bayesian probability distribution network which uses the chain rule without 

the graph and the Markov assumption, written as:  

𝑃(𝐴, 𝐵, 𝐶) =  𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵, 𝐴)𝑃(𝐷|𝐶, 𝐵, 𝐴)     (3) 

The difference in equation (2) and (3) is in the last product conditional probability of 𝐷, where 

equation (2) reduces the conditioning probability to only its immediate parent node 𝐶, based on the 

position of equation (1) and as captured in the graph of figure 2:1B. While equation (3) assumes no 

graph and factorizes the distribution using the chain rule. Hence, the probability of 𝐷, given (or 

conditioned on:) 𝐶, 𝐵 and 𝐴 are used as elicited in equation (3). 

3.5 Causal Identifiability with BNF Intervention Graphs: The second interpretation of the graph 

is called a causal interpretation. In this scenario, the arrows direction in the DAG 𝐺 represents the 

influence of causality among the variables. Here the BNF of equation (1) above is still essential, but 

the arrows are assumed to evince a separate process in the data generated. Hence, after eliciting 

causal path from the DAG 𝐺, the conditional probability of the distribution   𝑃(𝑣𝑖|𝑝𝑎𝑖) which is 

generated based on the graph 𝐺, and which is a statistical estimand, can be estimated from the data. 

The relations of conditional dependency expressed by the BNF formula of equation (1) does not 

necessarily leads to causal inference (due to the mixtures of confounding variables sometimes). 

However equation (1) can be extended to cater for interventions (which are causal in their 

implementation) as presented by Pearl in [7]. Using the do-operator of the do-calculus as an 

intervention on the desired variable (or node) the difference between mere conditional distribution 

(correction), written as: 𝑃(𝑌|𝑋 = 𝑥), and the causal intervention of the conditional distribution, 

written as: 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)),  in the graph and subsequently the data can be clearly distinguished. 

For instance, if the graph in figure 2, were derived from the query hypothesis of determining the 

effects of shoe size 𝑋 on the reading ability 𝑌 of children. The age variable 𝑍, confounds the 

relationship between reading ability 𝑌 and shoe size 𝑋, making them to have statistical correlation 

as shown in figure 1(a). But when you carry out an intervention on the shoe size 𝑋 such as 

𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)), the age variable 𝑍 that confounds the relations is severed, and the conditional 

probability of the BNF produces an estimand which is given as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) =

𝑃(𝑍)𝑃(𝑋|𝑍)𝑃(𝑌|𝑍, 𝑋) . Which is summarized by getting rid of the factor for probability of 𝑋 in the 

BNF to get: 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥)) = ∑ 𝑃(𝑌|𝑍, 𝑋)𝑧 𝑃(𝑍). With this causal intervention estimand, using 

the d-separation and the backdoor criteria, the shoe size 𝑋 will be set to a treatment unit of 1 and no 

treatment (control) unit of 0, while conditioning on a certain age 𝑍 say 8years. Thus, the difference 

between the treatment and no treatment of shoe size (𝑋: 0,1) generated from conditioning on a certain 

age (𝑍 = 8 ) for the set of 𝒁 variable in the dataset can be calculated as the ATE, given 

mathematically in terms of their expectation as: 𝜏(1,0) = 𝐸[𝑌|𝑑𝑜(𝑥 = 1)] − 𝐸[𝑌|𝑑𝑜(𝑥 = 0)], 
which translate to the causal estimate or causal inference estimation on the effect of shoe size 𝑋 on 

reading ability 𝑌 in children. This estimate would likely be zero (no effect), thus killing the lurking 

variable (age) and exposing the spurious association (correlation) that exists between shoe size 𝑋 and 
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reading ability 𝑌. Note however that if the confounding variable 𝑍 is unobserved or not part of the 

distribution (the dataset), the causal identification of 𝑋 on 𝑌 cannot be feasible to obtain in the data, 

even though it is revealed in the graph. This do-operator which translate to intervention and causality 

in data differentiates mere association (correlation) that is used in machine learning algorithms.  

With SCM, counterfactual hypothesized queries which are carried out on an individual level of the 

sampled dataset can also be estimated, using some techniques proposed by Pearl [25, 26] which 

transcend the do-operator of the do-calculus, which only work with i.i.d condition [27]. Although 

counterfactual causal effects would not be covered in this work. 

4. Assumptions in SCM 

The highest carbon monoxide (CO) levels were found in Arabica Special coffee, with an ADC level 

of 662 carbon monoxide gas. The lowest carbon monoxide (CO) levels were detected in Liberica 

coffee, with an ADC level of 105 carbon monoxide gas. The Artificial Neural Network method can 

identify Liberica coffee with a success rate of 98%, Arabica coffee with 100%, and Robusta coffee 

with 98%. 

This section covers the three major assumptions often used for causality, especially with i.i.d 

datasets, thus driving the process of causality in observational data setting with the SCM framework. 

These assumptions are: (i) The Markov assumption, (ii) The Acyclicity assumption  (iii) The causal 

sufficiency assumption. These assumptions are summarized as follows: 

4.1 The Markov Assumption: This assumption states that, a parent node in a DAG 𝐺 representing 

a variable is considered independent of all its non-descendant in the graph with the exception of its 

direct parent. This assumption ensures that causal estimand for the identification of the causal 

relations is generated from the graph to the data, using the BNF or the structural equation of 

functional causal model (FCM). This estimand which is modeled using the Markov condition when 

it is sufficient (i.e., all confounding variable identified), becomes the basis for which the probability 

distribution, which is a statistical estimand can be estimated from the dataset. Equation (1) is a 

representation of the Markov condition. The Markov assumption when combined with the causal 

edge assumption that states that: in a DAG 𝐺, all adjacent nodes are dependent; can generally be 

referred to as the minimality assumption [10, 16, 28].  

4.2 The Acyclicity Assumption: It is the phenomenon that ensures that the set of adjoining variables 

nodes 𝑽 in the causal graph does not form a cycle, a feedback loop or go back in time as shown in 

figure 2:1C, but are rather directed and acyclic as shown in figure 2:1B [29, 30].  

4.3 The Causal Sufficient Assumption: This condition states that in a given causal graph 𝐺, there 

are no variables confounding relationships that is unobserved among the study variables. That is to 

say, the causal sufficiency assumption ensures that all variables that may be confounding or having 

a hidden effect on the hypothesized query variable of treatment and outcome (𝑡, 𝑦) are identified and 

explicitly shown on the graph, whether or not they are observed in the distribution of the dataset [31-

33]. Hence, these are the assumption that are employed in the development of our SENSE-EGRA 

SCM. 

5. Experiment Design 

The EGRA (SENSE) dataset on the subtask of letter identification for grade 2 students of two 

northeast states of Nigeria under study is made of 1114 records, collected from a population of over 

200 primary schools in the said states. 19 columns are of interest for our design of the SCM and 

analysis. These columns are further grouped into 5 distinctive groups which are: A set of input 

features or covariates (𝑋) where 𝑋 stands for 𝑆𝑡𝑎𝑡𝑒, 𝐿𝐺𝐴, 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐴𝑔𝑒 etc.; the output feature 
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𝐿𝐼_3 (𝑌), the treatment variable 𝑇 (𝑇𝑟𝑒𝑎𝑚𝑒𝑛𝑡) and two other assessment or evaluation features 

(𝐿𝐼_1,  and 𝐿𝐼_2) respectively. See the appendix for more details on the dataset-encoded meanings. 

Thus, based on the above-discussed methodology in section 2, we designed the EGRA- SENSE SCM 

of figure 3, and validated for correctness with the dataset as shown in equation 4 below, and the result 

is presented in Table 1: 

𝐿𝐼_1 ⊥ 𝑋|𝐿𝐼_2, 𝑇 

𝐿𝐼_2 ⊥ 𝑇|𝑋 

𝐿𝐼_3(𝑌) ⊥ 𝑇|𝐿𝐼_1, 𝐿𝐼2, 

𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_2, 𝑇 

𝐿𝐼_3(𝑌) ⊥ 𝑋|𝐿𝐼_1, 𝐿𝐼_2,        (4) 

Thus, the estimand and the back-door adjustment criteria, which identified the admissible set of 

covariates required for adjustment in our EGRA- SENSE SCM, as shown in figure 3(a) is given as:  

P(T, X, LI_2, LI_3) = P(LI_3|X, LI_2, T)       (5) 

And the corresponding NPSEM generated from mutilated DAG as shown in figure 3(b) for our 

SENS-EGRA SCM designating an intervention distribution is given as: 

𝑥 =  f𝑥(𝑈𝑥), 𝑡 =  𝑡′, 𝑙𝑖2 =  f𝑙𝑖2
(𝑥, 𝑈𝑙𝑖2

), 𝑙𝑖1 =  f𝑙𝑖2
(𝑡, 𝑈𝑙𝑖1

), 𝑙𝑖_3 =  f𝑙𝑖3
(𝑙𝑖1, 𝑙𝑖_2, 𝑈𝑙𝑖_3) (6) 

Notice that 𝐿𝐼_1 is not conditioned on, since from the DAG, it is considered a post-treatment or 

mediator variable. Pearl et.al [7, 24, 25, 34], advised against conditioning on such post-treatment or 

mediator variables. Section 6, presents the result of the conditional independence test (CIT) 

implemented in an R package called Daggity [35] 

 

Figure 3. Shows our EGRA- SENSE- SCM with (b) and without (a) intervention 

6. Results Presentation and Discussion 

6.1 CIT Results for SENSE-EGRA SCM 

SCM is a qualitative process that is subjective based on background knowledge. Hence, experts 

advise validation and testing of the model with the dataset to ensure its correctness [4, 24, 25, 36-

39]. One of the most pervasive validation tests for SCM is the use of conditional independence testing 

(CIT) criteria [24, 25, 36-39]. Thus, once the validation process is over, the adjustment criteria can 

be applied to the SCM. Pearl et al.[24, 25, 37], proposed two adjustment criteria (the backdoor and 

front-door) depending on the structure of the SCMs in a concept called the d- separation (dependency 

separation). This concept when properly applied to the SCM is sufficient to identify the estimand 

(mathematics formula) for adjusting covariates and estimating the causal impact of the intervention. 

For our experiment, we implemented the CIT using the identified conditional independencies set of 

equation 4 and applied the back-door adjustment criteria for eliminating confounding bias as shown 

in equations 5 and 6 respectively. Table 1 below shows the result of the CIT performed on the dataset 

in order to verify and validate the correctness of our EGRA- SENSE SCM, implemented in the R 

package tool of [35].  
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Figure 4. Shows the result of the CIT identified in Equation 10 for each of the variables X 

6.2 CIT Results Discussion 

When testing for conditional independence, between two or more variables, it is required that their 

conditional dependency be zero [35]. Hence with the use of the R tool of Ankur [35], as used in this 

work, the root mean square error of approximation (RMSEA) and the p-value results that are close 

to zero (our p-value threshold is set at 0.05) validate the assumptions evinced by the SCM. While the 

values of the RMSEA and p-value that deviates significantly from zero or that are statically 

significant, reveal the model’s inaccuracy or lack of conditional dependency among them. 

Thus the R tool produced by Ankur [35], package functions LocalTests() and the 

PlotLocalTestResults() are used for the analysis of the CIT. The LocalTests() tests the CIT for each 

of the feature variables 𝑋 under the five conditional independence conditions identified in our 

EGRA- SENSE SCM of equation 4 for variable 𝑋 = 𝑆𝑡𝑎𝑡𝑒, 𝐿𝐺𝐴, 𝐺𝑒𝑛𝑑𝑒𝑟, 𝐴𝑔𝑒 etc., at a confidence 
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interval of 95% for all test cases as shown in column 2 of table 1. While the PlotLocalTestResults() 

function plots the results of the localTests() function as shown in column 3. All the results indicate 

negative p-values and zero-scale RMSEA values. Thus, validating the correctness of our EGRA- 

SENSE SCM, as no conditional dependency exceeds 0.4 in all test cases as shown in 

PlotLocalTestResults() graphical output in column 3 of the table; meaning their dependence is nearly 

zero. 

7. Conclusion and Future Work 

7.1 Conclusion 

In this study, we have designed a novel application-based SCM from the background knowledge 

gotten from the American university of Nigeria (AUN), Yola’s project on the letter identification 

subtask of Early Grade reading Assessment program on Strengthen Education in Northeast Nigeria 

(SENSE-EGRA), which was sponsored by the United State Agency for International Development 

(USAID), which occurred between 2021 to 2202. We employed the conditional independence test 

(CIT) criteria for the testing and validation of the models ‘correctness, and the results shows a near 

perfect model. The main contribution of this work is in the explication of the theoretical insight into 

the structural causal model (SCM) framework, the development and correctness validation testing of 

an application-based novel SCM for the SENSE-EGRA dataset. 

7.2 Future Work 

For future works, we shall use the developed SENSE-EGRA SCM alongside some adjustment and 

matching estimation techniques, such as ordinary least square regression adjustment, propensity 

score by (weighting, stratification and matching) to deal with confounding and selection biases in 

order to estimate the causal inference of SENSE-EGRA intervention program of the American 

University of Nigeria, Yola, Adamawa State, Nigeria under the sponsorship of USAID. 
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Appendix 

SENSE-EGRA Dataset/Composition/CIT Codes 

The entire materials needed for the reproduction of this study can be accessed on our GitHub page 

at: https://github.com/Sadaju-Codes/SENSE-EGRA_Project.git 
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