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Abstract—Designing and validating a causal model's correctness from a dataset whose background knowledge is obtained from a 

research process is not a common phenomenon. Studies have shown that in many critical areas, such as healthcare and education, 

researchers develop models from direct acyclic graphs without testing them. This phenomenon is worrisome and is bound to cast a dark 

shadow on the inference estimates that many arise from such models. In this study, we have designed a novel application-based SCM 

for the first time using the background knowledge gained from the American University of Nigeria (AUN), Yola, on the letter 

identification subtask of the Early Grade Reading Assessment (EGRA) program on the Strengthen Education in Northeast Nigeria 

(SENSE-EGRA) project dataset, which the USAID sponsored. We employed the conditional independence test (CIT) criteria for the 

model’s correctness validation testing, and the results show a near-perfect SCM.  
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I. INTRODUCTION

From time immemorial till date, human actions, processes, 

and indeed scientific explorations have been predicated on the 

premise of cause and effect. In the primordial era, the savaged 

and primitive man sought ways to articulate and uncover this 

phenomenon of cause and effects; and not having equipment, 

enough facts or the sine-quo-non to ascertain this 
phenomenon of knowing what actions (causes) that produces 

the effects mainly in incidences that were agonizing to him 

such as certain ebullitions of some sicknesses concomitant 

with mysterious deaths. Thus, the ability to know the right 

action to influence his environment or predict his future made 

man an idiosyncratic species from the rest of the animals. 

Thus, driving the savaged man from his initial state of 

higgledy-piggledy to embrace the practice of magic, 

astrology, and specific fetish ways to achieve the causation 

phenomenon to overcome his bewildered state. Gradually, as 

societies evolved and advanced, mankind himself advanced 

from his primitive and savage state to his current state of 
scientific and technological advancement. Thus, establishing 

his hegemony over every other species on earth, the same 

motives of trying to influence his environment and predict his 

future still stand.  

Nonetheless, the methods of achieving it have evolved; as 

magic arts give way to scientific logic, astrology transforms 

into astronomy, and other technological innovations, such as 

computer predictions and simulations, become the modern 

genies that are aberrations from the fetish ways of predicting 

the future. Albeit in this current era, the science of trying to 

ascertain causality or causation in human processes and 

actions is still a daunting and nontrivial task, as the traditional 

scientific way of establishing this act is associated with the 
randomized controlled experiment or randomized controlled 

trial (RCT) method. This RCT method and idea are credited 

to Fisher [1].  

Thus, this standard framework for causal discovery, known 

as RCT, always involves setting aside some (usually half) of 

the sampled population of the study and giving them treatment 

(an intervention) under the same conditions. In contrast, the 

second half of the study population is left untreated (not 

intervened on) or controlled under the same or similar 

conditions, to slay any possible confounding or lurking 

variable, which is often the factor that jeopardizes a proper 

juxtaposition of these two sampled populations in the RCT 

45

IJASCE : Int. J. of Adv. Sci. Comp. and Eng, 6(1) - April 2024 45-51



experiments. As fascinating as this method of RCT is, some 

events and circumstances make this kind of experiment too 

expensive, infeasible, or even unethical to perform. A good 

instance is to conduct an RCT on a hypothesized query that 

seeks to uncover the health benefits, or otherwise, of smoking 

on a specific population. This is an unethical experiment to 

conduct under RCT, because it would involve setting half of the 

population under review to smoke (treated) and the other not to 

smoke (control). Hence, with these obstacles posed by RCT, 

many researchers have resorted to the discovery and inference 
of causal structures from purely observational datasets, or a 

combination of both data and RCT [2], [3]. 

However, despite the successes of causal models using 

observational datasets, many of their designs remain untested 

or unvalidated for correctness, according to the extant 

literature. A recent study by Tennant and Murray [4], which 

investigated model testing in the healthcare sector, revealed 

that none of the 200 reviewed articles were tested or validated 

for correctness. Thus, if these models are to be further used in 

the estimation or evaluation of causal inference of such 

projects, the estimation results may leave considerable room 
for dispute and doubt. Thus, in this study, we have designed 

an application-based novel SCM from the background 

knowledge gotten from the American university of Nigeria 

(AUN), Yola’s project on the letter identification subtask of 

Early Grade reading Assessment (EGRA) program on 

Strengthen Education in Northeast Nigeria (SENSE), which 

was sponsored by the United State Agency for International 

Development (USAID), which occurred between 2021 to 

2202. We employed the conditional independence test (CIT) 

criteria to test the correctness of our SENSE-EGRA SCM, and 

the results show a near-perfect model (See Table 1). 
The main contribution of this work is as follows: 

 Theoretical insight into the structural causal model 

(SCM) framework, 

 Development of an application-based novel SCM for 

the SENSE-EGRA dataset 

 Model correctness validation using the conditional 

independent test (CIT) criteria. 

 Experiment Reproducibility. See the appendix links to 

data and CIT codes for reproduction of the experiment. 

In Section 2, the basic theoretical concept of the causal 

model is discussed. Section 3 discusses direct acyclic graphs 

and their relations to causality and the Bayesian network 
factorization. Section 4 presents some of the main 

assumptions driving SCMs. Section 5 presents our 

experiment setup as it relates to the design of our SENSE-

EGRA SCM. Section 6 presents our model correctness 

validation testing results using the CIT criteria. And finally, 

section 7 wraps up the study and gives direction on future 

work. 

 
Fig. 1  SCM with (b) an intervention and without (a) an intervention 

II. MATERIALS AND METHODS 

In this section, the various forms of causality are defined, 

followed by the two major frameworks used for causality, 

which are the structural causal model (SCM) framework and 

the potential outcome or Rubin causal model (RCM) 

framework, with a juxtaposition of both frameworks. The 

section concludes by explaining how causal interventions are 

executed in a dataset using the SCM framework.  

A. Causal Model 

It is an abstraction of mathematics that describes 

quantitatively the relations of causality that exist among 
variables in an observable dataset [5]. These mathematical 

models are derived from the domain and background 

knowledge embodied in the DAG, and they evince the causal 

relations within the observable dataset [6]-[8]. 

B. Types of Causal Model 

Two types of causal models exist for causality, which are 

(i) the Structural Causal Model (SCM) proposed by Pearl [7] 

and (ii) the Potential Outcome Framework, also called the 
Rubin Causal Model (RCM) [9], [10]. However, the study 

scope is limited to SCM and not the RCM. An SCM: The 

framework for causality based on SCM gives a holistic 

understanding of the theory of cause and effect. It is 

composed of two parts: the causal diagram (or graph) that 

encodes background domain knowledge and assumptions of 

the distribution (the dataset), and the Bayesian network 

factorization (BNF) or structural equations part, which 

models or algorithmized (mathematically) the relations 

among the study variables based on the causal assumptions 

from the graph [5], [11]-[13]. This work focuses more on 

SCM with a more detailed explanation of the connections of 
the graphs and the dataset in subsequent sections. 

C. Causal Relations with SCM 

Determining the causal relations that exist among variables 

in an observational study in a purely probabilistic distribution 

is an ambiguous and daunting task. If a conditional probability 

distribution such as �(�|�) for instance, represent the 

conditional probability distribution of obesity (Y) given a 

particular level of sugar intake (X). This distribution relation 
is ambiguous in terms of an experimental setting (RCT) where 

sugar intake was ascertained by randomization or merely 

through an observational process. In his book on causality, 

Pearl [7], to differentiate the mere conditional observational 

probability distribution (i.e., statistical 

association/correlation) and interventional conditional 

probability distribution (which is a causal association), 

introduced the do-operator of the do-calculus to differentiate 

interventional distribution from observational. Hence, the 

expression �(�|�) can now be regarded as a mere conditional 
observational association that depicts how the probability of 

Y (obesity) will change if someone were to observe the sugar 

intake (X). While �(�|��(� = 
)) is regarded as the 

interventional conditional probability distribution (which is a 

causal association), depicting the probability of obesity (Y) 

given that a measure unit of sugar (x) were taken 

(purposefully and not observed). Hence, making the 

observation and intervention distinct: �(�|� = 
) ≠
 �(�|��(� = 
)). The practical difference between the two 
may be the existence of a variable(s) Z (individual gene tar 

for instance) that may be confounding the relations, which 

exists in some back-door path: See figure 1 DAG for 

confounding relations. In the intervention distribution, the 
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causal effects is determined given difference values of the 

treatment/control X (i.e., when sugar is taken and when sugar 

is not taken) and this can be measured and compared in the 

interventional distribution, written as: �(�|��(� = 1)), and 

�(�|��(� = 0)) where 1 and 0 stands for treatment and no 

treatment (control) respectively for an individual instance, 

which is called the individual treatment effect (ITE). Thus, 

when this process involves all sampled or all cases of the 
population, the causal intervention is defined in terms of the 

average treatment effects (ATE) for the instances of the 

population. Written in terms of the expectation as: �(1,0) =
Ε�Y | do(x = 1)� − Ε�Y | do(x = 0)�. Also, conditional 

treatment effects (CATE) can be taken for a subpopulation 

group in a similar manner as well. Thus, it can be seen that 

this kind of intervention model is the RCT experiment that 

determines causality in observational datasets [14], [15]. 

Despite Pearl's clear distinction between observational and 

interventional datasets [7], not all datasets can be neatly 
categorized into these two types, as some experiments may 

not clearly or wholly demonstrate the value of the variable 

that is intervened upon in the dataset. Thus, due to these two 

distinctions, which are obfuscated in the distributions, it has 

become imperative to represent causal models explicitly in 

terms of a directed acyclic graph (DAG) or simply a causal 

graph as proposed by Pearl [14]. Causal graphs in SCM are a 

crucial component that facilitates the identification of 

causality from the dataset; hence, we discuss them in the next 

section. 

 

D. Causal Graph 

This section presents causal graphs as applicable in SCM. 

Fundamental concepts in graph theory, such as the popular 

backdoor adjustment criteria and the Bayesian network 
factorization (BNF), are elicited and explicated. 

E. Causal Graph Composition 
A causal graph (denoted as � = (�, �), consists of two or 

more nodes (also called vertices) representing a random 

variable set (�), �ℎ��� � = � ,  �!, �", … �$ and a number 

of connecting lines among the nodes called edges (�). These 
random variables may include the observed and unobserved 

(if they exist) variables alongside the treatment and outcome 

variables. In Figure 2.1A, the graph is undirected because it 

lacks directional arrows on its edges. While 1B, the graph is 

directed because of the arrow direction. And 1C shows a 

directed graph with a cycle [16] and finally, 1D shows an 

intervention graph on the variable %. A directed edge from & 

to ' (written as: A → ') is interpreted as, B is caused by  A 

or (A is the potential cause of B) [5]. Hence, with a causal 

graph, a hypothesized causal query can clearly be modelled 
through the causal pathways in the graph, and all 

dependent/independent relations as they relate to all variables 

associated with the query are known. And this graph model 

can be factorized using the Bayesian network factorization or 

the structural equations, based on some assumptions, to obtain 

a causal estimate and of the conditional probability distribution 

from which it can be used with the observed dataset to ascertain 

the causal estimate of the hypothesized query [14], [17]. 
 

 

Fig. 2  Undirected, directed, directed with cycle, and intervention graph 

 

A path in the graph is an oriented order of adjacent edges, 
irrespective of the direction of the adjoining nodes. For instance, 

& − % − ' are considered as a path in Figure 2.1A and & ⟶
% ⟵ '.  There is also a path in Figure 2.1B. A directed path is 

one in which all edges are directed or pointing in the same 

direction, e.g., the path, & ⟶ % → '. In Figure 2.1B, it is 

regarded as directed. Most causal algorithms work best with the 

directed acyclic graphs (DAGs) condition, as shown in Figure 

2.1B, and a few causal algorithms work with the cyclic graph 

condition, as shown in Figure 2.1C [5], [11]-[13]. 

F. Three Cardinal Relations in Graphs 

A descendant of a node & is a node % ∈ �, such that there is 

a direct edge from & to % (written as: & ⟶ %) in the DAG �. 

This corresponds to & being an ancestor (parent of) %. The 

progenies (& and ') of a node %, are the nodes in � with 

directed edges connecting %, (designated as: & ⟶ % ⟵ '). 

This child and the two parents' relationship is designated as 

& ⟶ % ⟵ ', is also called a collider [18], [19] or immorality 

[8], [16] is the first fundamental relation that can exist among 

variables represented in DAG. A second relation exists called a 

mediator or chain, where a parent node & (usually exogenous) 

that produces a child node %, where % in turn produces another 

child ' (which is a grand descendant of &) [8], [14], [17]. 

finally, a third relationship exists where a node %, which is a 

single parent having two descendants & and ' (written as: & ⟵
% ⟶ ') is called a fork or common cause confounder. Thus, 

these three relations (collider, chain/mediator, and fork) are the 

three common relations that exist in an observational dataset 

and can be mirrored or expressed in a DAG, forming the 

building block or structure in a causal graph for determining a 

relationship (causal or associational) in an observational setting 

[8], [11], [14], [17], [20], [21]. 

G. Causal Connection & the Backdoor Adjustment Criteria 

in a Graph 

D-separation and d-connection are the processes that define 

a set of variables V’s connectivity in a causal graph � [21]. 

The , in the d-separation and d-connection stands for 

dependency, and it is a process of establishing independence 

or dependency from two or more variables that are 

independent or otherwise on a third variable, cap C, in a DAG, 
which is a reflection in the dataset. For instance, in the case 

of a fork (& ⟵ % ⟶ '), or a chain/mediator (& ⟶ % → '), 

the variable % is a link between both & and '. Hence, once 

you condition on the linking variable %, you will block or 

close the dependency relationship that exists between paths & 

and '. That is to say, paths & and ' will become independent 
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conditioned on %, written as: &∐'|%. Albeit the reverse is the 

case, when it comes to the collider or immorality structure 

 (& ⟶ % ⟵ '), as the paths A and B are already 

independent or blocked in their current state (i.e., &∐' ∤ %: 
& is independent of ' not conditioned on %), without the need 

for conditioning on any variable including %.  

Hence, once you condition on %, a relationship between & 

and ' is induced (i.e., & and ' becomes dependent 

conditioned on %. written as:  & ∐ '|%). This process of 

blocking the flow of unwanted association on non-causal 

pathways to determine causality only through a causal 

pathway is called the backdoor adjustment criterion [22], [23]. 

Pearl [21], defined the process of d-separation and d-

connection for backdoor adjustment criteria in a DAG 

� formally as follows: A path connecting two variables & and 

' is said to be d-separated or blocked if and only if: (i) the 

path contains a fork such as : (& ⟵ % ⟶ ') or 

chain/mediator such as: (& ⟶ % → ') that has been 

conditioned on %. Written as: (A∐9 B|C), and (ii) the path 

between & and ' contain a collider on %, such as (& ⟶ % ⟵
') that has not been conditioned on, alongside any descendant 

of the collider %, that is not conditioned on as well. Written 

as: (&∐9' ∤ %) or just &∐9' . This same process of d-

separation and the backdoor adjustment criteria from the 

graph � can be utilized to determine 

dependencies/independencies of variables in the distribution 

(or dataset), which is a factorization of the d-separation in the 

graph using the Bayesian Network Factorization (BNF). The 

d-separation in the distribution is written as: A∐: B|C, or 

A∐: B|C for independence and dependency conditions, 

respectively, similar to the d-separation in the graph with the 

subscript  P to distinguish it from the graph’s d-separation 

criteria, which is represented by the subscript G. This can 

further be used to determine causal relations in the 

distribution as a whole. On the other hand, a path from & and 

' through %, is said to be d-connected, unblocked, or open 
when it is not d-separated [17], [21]. 

H. The Bayesian Network Factorization (BNF) in Graphs 
The DAGs are interpreted in two parts. i.e., the 

probabilistic and the causal interpretations. The probabilistic 

inference sees the directional arrows on the DAG � as 

showing probabilistic dependencies or associations among 

the variables of study, while the lack of arrows corresponds to 
the conditional independence asserted by the study variables 

[24]. Based on some assumptions, the simplest being the 

Markovian condition, which states that each study variable is 

considered independent of all its non-descendants in the graph 

except its direct parent. Usually written as &∐'|%. Hence, 

based on the assumption, the joint probability distribution 

function �(;) = �(;< , … , ;$) factorizes based on the BNF as: 

�(;) =  = �(;<|>?<)
$

<
 (1) 

where ;< = 1, … , @, ?@� >?< denotes the parent of the 

variable ;<in the graph  
Thus, based on the BNF of equation (1), the graph in Figure 

2:1B, for instance, the probability distribution of it (i.e.,1B) 

can be factorized and summarized, based on the Markov 

assumption, as follows:  

�(&, ', %) =  �(&)�('|&)�(%|', &)�(,|%) (2) 

This contrasts with the normal Bayesian probability 

distribution network, which uses the chain rule without the 

graph and the Markov assumption, written as:  

�(&, ', %)
=  �(&)�('|&)�(%|', &)�(,|%, ', &) 

(3) 

The difference between equations (2) and (3) is in the last 

product, the conditional probability of ,, where equation (2) 

reduces the conditioning probability to only its immediate 

parent node %, based on the position of equation (1) and as 

captured in the graph of Figure 2:1B. While equation (3) 

assumes no graph and factorizes the distribution using the 

chain rule. Hence, the probability of ,, given (or conditioned 

on:) %, ' and & are used as elicited in equation (3). 

I. Causal Identifiability with BNF Intervention Graphs 

The second interpretation of the graph is called a causal 

interpretation. In this scenario, the arrow's direction in the 

DAG � represents the influence of causality among the 

variables. Here, the BNF of equation (1) above is still 

essential, but the arrows are assumed to evince a separate 

process in the data generated. Hence, after eliciting a causal 

path from the DAG �, the conditional probability of the 

distribution   �(;<|>?<), which is generated based on the 

graph �, and which is a statistical estimand, can be estimated 

from the data. The relations of conditional dependency 

expressed by the BNF formula of equation (1) do not 

necessarily lead to causal inference (due to the mixtures of 

confounding variables sometimes).  

However, equation (1) can be extended to cater for 

interventions (which are causal in their implementation) as 

presented by [7]. Using the do-operator of the do-calculus as 

an intervention on the desired variable (or node) the 

difference between mere conditional distribution (correction), 

written as: �(�|� = 
), and the causal intervention of the 

conditional distribution, written as: �(�|��(� = 
)),  in the 

graph and subsequently the data can be clearly distinguished. 

For instance, if the graph in Figure 2 were derived from the 

query hypothesis of determining the effects of shoe size � on 

the reading ability � of children. The age variable A, 

confounds the relationship between reading ability � and shoe 

size �, making them have a statistical correlation as shown in 

Figure 1(a). But when you carry out an intervention on the 

shoe size � such as �(�|��(� = 
)), the age variable A that 

confounds the relations is severed, and the conditional 

probability of the BNF produces an estimand which is given 

as �B�C��(� = 
)D = �(A)�(�|A)�(�|A, �) . Which is 

summarized by getting rid of the factor for probability of � in 

the BNF to get: �B�C��(� = 
)D = ∑ �(�|A, �)F �(A). 

With this causal intervention estimand, using the d-separation 

and the backdoor criteria, the shoe size � will be set to a 

treatment unit of 1 and no treatment (control) unit of 0, while 

conditioning on a certain age A say 8years.  

Thus, the difference between the treatment and no 

treatment of the shoe size (�: 0,1) generated from 

conditioning on a certain age (A = 8 ) for the set of H variable 

in the dataset can be calculated as the ATE, given 

mathematically in terms of their expectation as: �(1,0) =
���|��(
 = 1)� − ���|��(
 = 0)�, which translates to the 

48



causal estimand or causal inference estimation on the effect 

of shoe size � on reading ability � in children. This estimand 

would likely be zero (no effect), thus killing the lurking 

variable (age) and exposing the spurious association 

(correlation) that exists between shoe size � and reading 

ability �. Note, however, that if the confounding variable A is 

unobserved or not part of the distribution (the dataset), the 

causal identification of � on � It cannot be feasible to obtain 

from the data, even though it is revealed in the graph. This do-

operator, which translates to intervention and causality in 

data, differentiates from mere association (correlation) that is 

used in machine learning algorithms.  

With SCM, counterfactual hypothesized queries, which 

are carried out on an individual level of the sampled dataset, 

can also be estimated, using some techniques proposed by 

[25], [26], which transcend the do-operator of the do-

calculus, which only work with the i.i.d. condition [27]. 

Although counterfactual causal effects would not be covered 
in this work. 

J. Assumptions in SCM 

This section covers the three major assumptions often used 

for causality, especially with i.i.d. datasets, thus driving the 

process of causality in observational data settings with the 

SCM framework. These assumptions are: (1) The Markov 

assumption, (2) The Acyclicity assumption, and (3) The 

causal sufficiency assumption. These assumptions are 

summarized as follows: 

K. The Markov Assumption 
This assumption states that a parent node in a DAG � 

Representing a variable is considered independent of all its 

non-descendants in the graph, except its direct parent. This 

assumption ensures that the causal estimand for identifying 

causal relations is generated from the graph to the data, using 

the BNF or the structural equation of the functional causal 
model (FCM). This estimand, which is modeled using the 

Markov condition when it is sufficient (i.e., all confounding 

variables identified), becomes the basis for estimating the 

probability distribution, a statistical estimand, from the 

dataset. Equation (1) is a representation of the Markov 

condition. The Markov assumption, when combined with the 

causal edge assumption, states that: in a DAG �All adjacent 

nodes are dependent; this can generally be referred to as the 

minimality assumption [10], [16], [28].  

L. The Acyclicity Assumption 

It is the phenomenon that ensures that the set of 

adjoining variable nodes I in the causal graph, it does not 

form a cycle, a feedback loop, or go back in time, as shown 

in Figure 2:1C, but are rather directed and acyclic, as 

shown in Figure 2.1B B [29], [30].  

M. The Causal Sufficient Assumption 

This condition states that in a given causal graph �There 

are no variables confounding relationships that are 

unobserved among the study variables. That is to say, the 

causal sufficiency assumption ensures that all variables that 

may be confounding or having a hidden effect on the 

hypothesized query variable of treatment and outcome (J, K) 

are identified and explicitly shown on the graph, whether or 

not they are observed in the distribution of the dataset [31]-

[33]. Hence, these are the assumptions that are employed in 

the development of our SENSE-EGRA SCM. 

III. RESULTS AND DISCUSSION 

The EGRA (SENSE) dataset, focusing on the subtask of 

letter identification for grade 2 students in two northeast states 
of Nigeria, comprises 1,114 records collected from over 200 

primary schools in these states. Nineteen columns are of 

interest for our design of the SCM and analysis. These 

columns are further grouped into five distinctive groups, 

which are: A set of input features or covariates (�) where � 

stands for LJ?J�, M�&, ��@���, &N� etc., the output feature 

MO_3 (�), the treatment variable R (R��?S�@J) and two other 

assessment or evaluation features (MO_1,  and MO_2) 
respectively. See the appendix for more details on the dataset-

encoded meanings. 

Thus, based on the above-discussed methodology in 

section 2, we designed the EGRA- SENSE SCM of Figure 3, 

and validated for correctness with the dataset as shown in 

Equation 4 below, and the result is presented in Table 1: 

MO_1 ⊥ �|MO_2, R 
MO_2 ⊥ R|� 
MO_3(�) ⊥ R|MO_1, MO!, 
MO_3(�) ⊥ �|MO_2, R 
MO_3(�) ⊥ �|MO_1, MO_2, 

(4) 

Thus, the estimand and the back-door adjustment criteria, 

which identified the admissible set of covariates required for 

adjustment in our EGRA- SENSE SCM, as shown in Figure 

3(a), are given as:  

P(T, X, LI_2, LI_3) = P(LI_3|X, LI_2, T) (5) 

And the corresponding NPSEM generated from the 

mutilated DAG, as shown in Figure 3(b), for our SENS-

EGRA SCM designating an intervention distribution is given 
as: 


 =  f\(]\), J =  J^,
_`! =  fa<bB
, ]a<bD, _` 
=  fa<bBJ, ]a<cD, _`_3
=  fa<d(_` , _`_2, ]a<_") 

(6) 

Notice that MO_1 is not conditioned on, since from the 

DAG, it is considered a post-treatment or mediator variable. 
Some studies by [7], [24], [25], [34], advised against 

conditioning on such post-treatment or mediator variables. 

Section 6, presents the result of the conditional independence 

test (CIT) implemented in an R package called Daggity [35]. 

 
Fig. 3  EGRA- SENSE- SCM with (b) and without (a) intervention 

A. CIT Results for SENSE-EGRA SCM 

SCM is a qualitative process that is subjective based on 

background knowledge. Hence, experts advise validation and 

testing of the model with the dataset to ensure its correctness 

[4], [24], [25], [36]-[39]. One of the most pervasive validation 
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tests for SCM is the use of conditional independence testing 

(CIT) criteria [24], [25], [36]-[39]. Thus, once the validation 

process is over, the adjustment criteria can be applied to the 

SCM. Some studies by [24], [25], [37], proposed two 

adjustment criteria (the backdoor and front-door) depending 

on the structure of the SCMs in a concept called the d- 

separation (dependency separation). This concept, when 

properly applied to the SCM, is sufficient to identify the 

estimand (mathematical formula) for adjusting covariates and 

estimating the causal impact of the intervention. For our 
experiment, we implemented the CIT using the identified 

conditional independence set of equation 4 and applied the 

back-door adjustment criteria for eliminating confounding 

bias as shown in equations 5 and 6, respectively. Figure 4 

below shows the result of the CIT performed on the dataset to 

verify and validate the correctness of our EGRA- SENSE 

SCM, implemented in the R package tool of [35].  

 

 

 
Fig. 4  The Result of The CIT Identified in Equation 10 for Each of The 

Variables X 
 

B. CIT Results Discussion 
When testing for conditional independence between two or 

more variables, it is required that their conditional 
dependency be zero [35]. Hence, with the use of the R tool of 

Ankur [35], as used in this work, the root mean square error 

of approximation (RMSEA) and the p-value results that are 

close to zero (our p-value threshold is set at 0.05) validate the 

assumptions evinced by the SCM. While the values of the 

RMSEA and p-value that deviate significantly from zero or 

that are statistically significant reveal the model’s inaccuracy 

or lack of conditional dependency among them. 

Thus, the R tool produced by Ankur [35], package 

functions LocalTests() and the PlotLocalTestResults() are 

used for the analysis of the CIT. The LocalTests() tests the 

CIT for each of the feature variables � under the five 

conditional independence conditions identified in our EGRA- 

SENSE SCM of equation 4 for the variable � =
LJ?J�, M�&, ��@���, &N� etc., at a confidence interval of 

95% for all test cases as shown in column 2 of Table 1. The 

PlotLocalTestResults() function plots the results of the 

localTests() function as shown in column 3. All the results 

indicate negative p-values and zero-scale RMSEA values. 
Thus, validating the correctness of our EGRA- SENSE SCM, 

as no conditional dependency exceeds 0.4 in all test cases, as 

shown in PlotLocalTestResults() graphical output in column 

3 of the table, meaning their dependence is nearly zero. 

IV. CONCLUSION  

In this study, we have designed a novel application-based 

SCM from the background knowledge gotten from the 

American university of Nigeria (AUN), Yola’s project on the 
letter identification subtask of Early Grade reading 

Assessment program on Strengthen Education in Northeast 

Nigeria (SENSE-EGRA), which was sponsored by the United 

State Agency for International Development (USAID), which 

occurred between 2021 to 2202. We employed the conditional 

independence test (CIT) criteria for the testing and validation 

of the models ‘correctness, and the results show a near-perfect 

model. The main contribution of this work is in the 

explication of the theoretical insight into the structural causal 

model (SCM) framework, the development and correctness 

validation testing of an application-based novel SCM for the 
SENSE-EGRA dataset. 

For future works, we shall use the developed SENSE-

EGRA SCM alongside some adjustment and matching 

estimation techniques, such as ordinary least square 

regression adjustment, propensity score by (weighting, 

stratification and matching) to deal with confounding and 

selection biases to estimate the causal inference of SENSE-

EGRA intervention program of the American University of 

Nigeria, Yola, Adamawa State, Nigeria under the sponsorship 

of USAID. 
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