
Journal Homepage www.ijasce.org/index.php/ijasce

IJASCE International Journal of
Advanced Science Computing and Engineering

IJASCE
International Journal of Advanced Science
Computing and Engineering

Augmented Reality Applications for Cultural Heritage

Using Kinect Sensor

Rita Afyenni a, Aldo Erianda a, Putri Wahyuni a, Ardian Firosha a, Taufik Gusman a, Sumema a
a Department of Information Technology, Politeknik Negeri Padang, Padang, Indonesia

Corresponding author: *aldo@pnp.ac.id

Abstract—There are quite a number of advantages gained from Microsoft Kinect which is a motion sensing device that also includes

AR applications to aid in the preservation and promotion of cultural assets. In this work, a batik model was developed with the help of

Microsoft Kinect by utilizing its core components consisting of a depth sensor, an RGB camera and a microphone array to allow motion

tracking, gesture recognition, and voice command functionalities of the device.The depth sensing features of the device, in particular

the structural light employed, transition to Time-of-Flight technology has improved the efficiency and applicability of the device

towards AR. Kinect has the ability to create an immersive AR experience by accurately mapping virtual objects to the user’s

environment, leveraging body joint tracking to create a 3D skeletal model. It is required to take into consideration the kinnect

positioning technique which has importance in allowing 3D objects and models to align. Therefore, the conclusion addresses Kinect as

it relates to human-computer interaction, in particular, concerning its potential to change body interaction in real time and how it sets

the stage for future systems that require an active interaction across a number of fields including culture and heritage.

Keywords— Kinect; sensor; augmented reality; batik.

Manuscript received 14 Sep. 2024; revised 29 October. 2024; accepted 4 November. 2024; Date of publication 31 Dec. 2024.

International Journal of Advanced Science Computing and Engineering is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

 Microsoft Kinect is a motion-sensing input device that was

originally designed for the Xbox gaming console. Launched

in 2010, Kinect uses a combination of a camera, depth sensor,
and microphone array to capture motion, gestures, and voice

commands, allowing users to interact with computers or game

consoles in a more natural, immersive way without needing

traditional controllers [1]-[11].

The original Kinect was intended as a gaming peripheral,

enabling gesture-based gaming and hands-free control of the

Xbox interface. However, developers and researchers quickly

recognized its potential for a broad range of applications

outside of gaming. The Kinect’s core technology includes a

depth sensor that uses infrared light to gauge distance, a

camera for capturing RGB data, and an array microphone for

sound localization and speech recognition.
By 2011, Microsoft released the Kinect SDK (Software

Development Kit) for Windows, allowing developers to

create applications for the device beyond gaming. This

opened the door for a wide array of uses, including in fields

such as robotics, healthcare, art, and education. The SDK

included tools for skeletal tracking, face recognition, speech

recognition, and more, making it a versatile tool for computer

vision and human-computer interaction research [12]-[15].

II. MATERIALS AND METHOD

The Microsoft Kinect's core technology consists of three

primary components: a depth sensor, an RGB camera, and

an array microphone. These elements work together to

capture rich data that enables motion sensing, gesture

recognition, and voice commands.

A. Depth Sensor

The depth sensor is arguably the most innovative and
crucial component of the Kinect. It allows the device to "see"

in three dimensions, which is fundamental for motion tracking

and gesture recognition. The Kinect’s depth sensor

uses infrared (IR) light to measure the distance between the

sensor and objects in the environment. Specifically, the

129

IJASCE : Int. J. of Adv. Sci. Comp. and Eng, 6(3) - December 2024 129-133

original Kinect for Xbox 360 utilized a technology developed

by PrimeSense, called structured light. The sensor consists of

an infrared projector and an infrared camera. The projector

emits a pattern of infrared light (often a dot matrix) into the

environment. The camera then captures the reflected infrared

light from the objects. The depth is calculated based on how

the projected pattern is distorted when it bounces back from

objects. By analyzing these distortions, the system determines

the distance to various points in the scene, creating a depth

map — a 3D representation of the environment. In the Kinect
for Xbox One and later versions, Microsoft switched to a

different depth-sensing technology known as Time-of-Flight

(ToF). The ToF sensor sends out pulses of infrared light and

measures the time it takes for the light to reflect back to the

sensor. By calculating the time, it takes for the light to travel

to an object and back, the sensor can accurately gauge

distances.

B. RGB Camera

The Kinect also includes a standard RGB camera, similar

to the cameras found in webcams or smartphones. The RGB

camera captures high-resolution color images (at 640x480

resolution for the original Kinect for Xbox 360 and

1920x1080 resolution for the Kinect for Xbox One). This

camera operates like any conventional digital camera,

capturing visual data in red, green, and blue color channels.

Fig. 1 Human Skeleton Joint

C. Array Microphone

The Kinect includes an array of microphones designed for

advanced sound localization and speech recognition. The

Kinect has a multi-microphone array (usually consisting of

four microphones) that captures audio from the environment.

The microphones are spaced apart on the device to allow

for beamforming, a signal processing technique that uses the

spatial separation between microphones to determine the

direction of sound. The microphone array can filter out

background noise and focus on sounds coming from a specific

direction, such as the user’s voice, improving the quality and

accuracy of voice commands.

D. Body Joint

Microsoft Kinect is a motion-sensing input device that uses

depth-sensing technology to track human body movements in

3D space. The image represents a 3D skeletal model with

labeled body joints, which Kinect uses to understand and
analyze human poses and movements.

The head and neck joints include several anatomy points.

Nose, Right Eye, Left Eye, Right Ear and Left Ear are useful

as facial landmarks in establishing the orientation and

positioning of the head. For operations tracking head position

and movements, the head provides the central anchor. Neck

supports the head, which is positioned above the torso and

rotates along with head translations.

The head and neck joints have a few important components

joints. Nose, Right Eye, Left Eye, Right Ear, and Left Ear

functions which serve as clutch connectors of the body,
turning the head, jaw, and face upwards and downwards. The

Head joint is used as the primary reference point where head

position is monitored while the Neck joint can be considered

as the root of head, where the head is joined and is adjusted to

the upper torso, thereby allowing range of motion around head

tilts and neck region.

The joints of upper body are very important in detecting the

body movement and gesture. The markers in this region relate

to what is known as the clavicle joints on the left and right

which respectively correspond to the collarbone that connects

the neck and shoulders.(1) With shoulder joints on each side

contributing to shoulder position and movement tracking, our
arm movements are able to be perceived reliably. The elbow

joints (right, left) leverage data to track the forearms, and

wrist joints capture the position of the wrist, providing data to

track the hands. The hand joints where both of the hands are

located also indicate gesture interpretation. Finally, thumb

and handtip joints located on every hand record fine details of

hand movement.

Since the spine and torso joints represent points of interest

for tracking torso orientation and posture. The Spine_Chest

joint corresponds to the upper chest or upper spine to help

calculate the rotation of the upper torso. The Spine_Naval
joint — near the belly button — is used to detect mid-body

position and motion. The Pelvis joint represents the center of

mass of the body and its position at the base of the spine

signifies its position, making it a crucial component in

monitoring the movements and keeping the overall posture of

the lower body stable.

Lower body joints are used for tracking the leg movement

and for balance which is critical. Two joints with Right and

Left Hip names that connect the torso to the legs and represent

hip positions, allowing for leg movement tracking. Knee

positions (Right and Left Knee joints) can be used to observe
the movements of the lower legs while walking or bending.

Right and Left Ankle joints which denote position of the ankle,

help track foot movement and balance. The Right Foot and

Left Foot joints, at last, display the location of the feet, shown

in turn, they give good information for foot ground contact

points.

Kinect uses depth sensing, human detection, and skeletal

mapping in order to track body joints in three steps using a

130

series of one-time steps. In the first instance, it combines the

use of infra camera and infrared sensors in order to capture

depth data which would in turn assist in making 3D maps of

the area. It is through this technique that Kinect is able to

detect human bodies through depth information by

considering the depth as the shape of contours that fit in

human form. After a body is tracked, it overlays a 3D skeletal

template on the body, which uses the identifiable joint points

on the body for the purpose of tracking the different body

parts. Kinect generates 3D coordinates (X, Y, Z) of each joint
with respect to the sensor allowing accurate positioning

during movement. And this tracking activity would

emphasize the pose of the joints until the last one.

III. RESULT AND DISCUSSION

The results of the development of a traditional batik cloth

application using the Kinect sensor were obtained as shown

in the code and image below.

Fig. 2 Get depth- or color-camera textures

This code segment grabs the depth and color textures using

a KinectManager instance, which is the one who manages the

operations of Kinect. It starts by creating an instance of

the KinectManager class (KinectManager manager =

KinectManager.Instance;) followed by a testing of Kinect

Manager that it has been initialized properly (if (manager &&

manager.IsInitialized())). This is done in order to ensure that the

Kinect sensor is ready to provide data before proceeding. After

preparing the sensor, the code goes on to obtain two textures:

‘depthTexture’ which is about the depth data —Textures are 2D

images where each pixel is used to encode information about
depth., which is depth data — Textures are 2D images where

each pixel is used to encode information about

depth. and colorTexture’ about the color of the image

using manager. GetUsersClrTex()to get a perspective of the

scene. In general, this code is designed to fetch and make use of

the color and depth textures of the cameras provided in the Kinect,

to trigger applications that are based on the depth and color data

of the Kinect.

Fig. 2 Get position on join body

The following Code track and obtain the position of right

hand (HandRight) joint of user detected by kinect. The first

line creates a variable joint of type KinectInterop.

KinectInterop. JointType where JointType the right hand.)

JointType. HandRight).

Afterwards, it creates a new example instance of

KinectManager like so (where KinectManager. Instance;) and

checks for manager initialization (if (manager && manager.

(KinectSensor.KinectSensors[0]. Is Initialized())`), to make

sure that Kinect is ready to use.

After initialization, the code also checks for a user presence

in the Kinect view (if (manager. IsUserDetected())). If it is
able to detect a user, it uses manager to get the ID of the

primary user. GetPrimaryUserID(). Having the user ID, it

then checks if the specified joint (right hand) is being tracked

(if (manager. JointTracked => Here we have to check if the

joint is tracked or not (Joint Tracked => (Int, bool)) (e.g.

IsJointTracked(userId, (int)joint)). In the case that the joint is

being tracked, the code calls `manager.

GetJointPosition(userId, (int)joint) which returns a

Vector3 representing the joint coordinates X, Y, Z that

indicates the joint position that was retrieved can be used to

drive a control over some object or initiate actions based on
hand position activity.

Fig. 3 Join Body

Fig. 4 Special event handlers for user detection

Using KinectManager, This code snippet checks real-time

number of users represented by Kinect Sensors. It first finds

if there is an initialized and available instance of

KinectManager and assigns it to manager. Instance and check

that manager is non-null and initialized. If it meets these

requirements, it calls the manager. Below, it calls the method

GetUsersCount() and saves the information in the variable

usersNow. Code compares usersNow to usersSaved, a

131

variable that holds the previous number of users that were

detected. If usersNow > usersSaved, a new user has entered

the sensor field. Otherwise, if usersNow is less than

usersSaved, then a user has exited the range of the sensor. The

usersSaved variable is then updated with what is currently in

usersNow, since it gets used again in the next cycle, this

ensures we are only tracking the changes. It also allows for

quickly identifying when users are added or removed.

Fig. 5 User Detection

Fig. 6 Mapping Coordinate

This code processes depth data coming from a Kinect

sensor getting depth image coordinates and converting them

from depth coordinates to color coordinates and back from

color coordinates to real depth coordinates. It starts by trying

to get a depth frame with e.FrameReference. which is to

acquire the frame through AcquireFrame() and verify whether

it is successful. If so, the frame data is copied into the
specified memory location (depthImage. A pointer to a buffer

containing the raw image data (IntPtr), formatted according to

the spatial resolution of the Kinect’s depth image. Next, given

the depth image, the code chooses a point (100, 100)` to check

its depth value, and determine whether or not it is a valid point

(non-zero). It goes on to say if zero is passed then the enter

depth and it returns from the code.

If the depth is a valid depth value, it is converted from

millimeters to meters by dividing from 1000 to match the

expected depth from Kinect SDK output units. Next, the

calibration object uses its DepthImageToColorImage method
to map the (100, 100) depth image coordinates to (colorx,

colory) color image coordinates. An optional distortion

lookup table can be passed to accelerate conversions. (The

corresponding line is commented out in the code).

Next, a similar transformation is conducted using the

Kinect SDK's CoordinateMapper to map the same depth

image coordinates to color space, providing a basis for

comparison. The depth image coordinates are then converted

back to their original values using ColorImageToDepthImage

and printed, helping to confirm the accuracy of the round-trip

conversion process. This code enables precise calibration and

point mapping between Kinect’s depth and color image
spaces, important for applications requiring synchronized

depth and color data alignment.

Fig. 7 User Coordinate

It is necessary to pay attention to the Kinect positioning

technique which has an important role so that 3D objects and

models can match. Then you can add model gender

recognition, so you can determine which traditional clothing

appears automatically according to gender. This is done to get
a better UI/UX

IV. CONCLUSION

The Microsoft Kinect’s body tracking technology

represents a paradigm shift in the way computers perceive and

interact with humans. Its advancements in depth sensing,

skeletal tracking, and machine learning have broadened the

scope of real-time body tracking, making it more accessible,

accurate, and versatile. This technology continues to inspire
new applications and innovations across a multitude of sectors,

fundamentally changing human-computer interaction and

setting the stage for the next generation of interactive systems.

REFERENCES

[1] Nijholt, "Virtual worlds: A new open access journal of virtual reality,

augmented and mixed reality technologies, and their uses," Virtual

Worlds, vol. 1, no. 1, pp. 18-19, Aug. 2022,

doi:10.3390/virtualworlds1010002.

[2] J. Manjorin, "How eLearning practitioners can find value in

augmented and virtual reality technology," eLearn, vol. 2017, no. 8,

Aug. 2017, doi: 10.1145/3136555.3133321.

132

[3] K. Swargiary, "Augmented reality (AR) technology on student

engagement: An experimental research study," Qeios, Nov. 2023,

doi:10.32388/fnwgpu.

[4] J. Y. Yoon et al., "The effect of social media apps on shopping apps," J.

Bus. Res., vol. 148, pp. 23-32, Sep. 2022,

doi:10.1016/j.jbusres.2022.04.021.

[5] S. Alatrash, S. Arnab, and K. Antlej, "Communicating engineering

heritage through immersive technology: A VR framework for

enhancing users' interpretation process in virtual immersive

environments," Comput. Educ.: X Reality, vol. 3, p. 100040, Dec.

2023, doi: 10.1016/j.cexr.2023.100040.

[6] M.-A. Moinnereau, A. A. Oliveira, and T. H. Falk, "Instrumenting a

virtual reality headset for at-home gamer experience monitoring and

behavioural assessment," Front. Virtual Reality, vol. 3, Oct. 2022,

doi:10.3389/frvir.2022.971054.

[7] A. Theodoropoulos et al., "Developing an interactive VR CAVE for

immersive shared gaming experiences," Virtual Worlds, vol. 2, no. 2,

pp. 162-181, May 2023, doi: 10.3390/virtualworlds2020010.

[8] R. Kirollos and W. Merchant, "Comparing cybersickness in virtual

reality and mixed reality head-mounted displays," Front. Virtual

Reality, vol. 4, Feb. 2023, doi: 10.3389/frvir.2023.1130864.

[9] P. Sinlapanuntakul, J. Korentsides, and B. S. Chaparro, "Exploring the

user experience (UX) of a multi-window augmented reality

environment," Front. Virtual Reality, vol. 4, Aug. 2023,

doi:10.3389/frvir.2023.194019.

[10] M. C. Howard and M. M. Davis, "A meta-analysis of augmented

reality programs for education and training," Virtual Reality, vol. 27,

no. 4, pp. 2871-2894, Aug. 2023, doi: 10.1007/s10055-023-00844-6.

[11] L. Kerawalla et al., "'Making it real': Exploring the potential of

augmented reality for teaching primary school science," Virtual

Reality, vol. 10, no. 3-4, pp. 163-174, Nov. 2006, doi: 10.1007/s10055-

006-0036-4.

[12] H. Salmi, H. Thuneberg, and M.-P. Vainikainen, "Making the invisible

observable by augmented reality in informal science education

context," Int. J. Sci. Educ., Part B, vol. 7, no. 3, pp. 253-268, Nov.

2016, doi: 10.1080/21548455.2016.1254358.

[13] Z. Du, J. Liu, and T. Wang, "Augmented reality marketing: A

systematic literature review and an agenda for future inquiry," Front.

Psychol., vol. 13, Jun. 2022, doi: 10.3389/fpsyg.2022.925963.

[14] W. Handayani, R. Afyenni, and A. Syukri, "Optimalisasi promosi

Nagari berbasis website," in Proc. Appl. Bus. Eng. Conf., vol. 10,

2022.

[15] Y. Sonatha et al., "Synergizing AHP and SMART: An integrated

decision support system for best employee selection," in Proc. 11th Int.

Appl. Bus. Eng. Conf. (ABEC), Bengkalis, Indonesia, Sep. 2023, Feb.

2024.

133

