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Abstract—There are quite a number of advantages gained from Microsoft Kinect which is a motion sensing device that also includes 

AR applications to aid in the preservation and promotion of cultural assets. In this work, a batik model was developed with the help of 

Microsoft Kinect by utilizing its core components consisting of a depth sensor, an RGB camera and a microphone array to allow motion 

tracking, gesture recognition, and voice command functionalities of the device.The depth sensing features of the device, in particular 

the structural light employed, transition to Time-of-Flight technology has improved the efficiency and applicability of the device 

towards AR. Kinect has the ability to create an immersive AR experience by accurately mapping virtual objects to the user’s 

environment, leveraging body joint tracking to create a 3D skeletal model. It is required to take into consideration the kinnect 

positioning technique which has importance in allowing 3D objects and models to align. Therefore, the conclusion addresses Kinect as 

it relates to human-computer interaction, in particular, concerning its potential to change body interaction in real time and how it sets 

the stage for future systems that require an active interaction across a number of fields including culture and heritage. 
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I. INTRODUCTION

 Microsoft Kinect is a motion-sensing input device that was 

originally designed for the Xbox gaming console. Launched 

in 2010, Kinect uses a combination of a camera, depth sensor, 
and microphone array to capture motion, gestures, and voice 

commands, allowing users to interact with computers or game 

consoles in a more natural, immersive way without needing 

traditional controllers [1]-[11]. 

The original Kinect was intended as a gaming peripheral, 

enabling gesture-based gaming and hands-free control of the 

Xbox interface. However, developers and researchers quickly 

recognized its potential for a broad range of applications 

outside of gaming. The Kinect’s core technology includes a 

depth sensor that uses infrared light to gauge distance, a 

camera for capturing RGB data, and an array microphone for 

sound localization and speech recognition. 
By 2011, Microsoft released the Kinect SDK (Software 

Development Kit) for Windows, allowing developers to 

create applications for the device beyond gaming. This 

opened the door for a wide array of uses, including in fields 

such as robotics, healthcare, art, and education. The SDK 

included tools for skeletal tracking, face recognition, speech 

recognition, and more, making it a versatile tool for computer 

vision and human-computer interaction research [12]-[15]. 

II. MATERIALS AND METHOD

The Microsoft Kinect's core technology consists of three 

primary components: a depth sensor, an RGB camera, and 

an array microphone. These elements work together to 

capture rich data that enables motion sensing, gesture 

recognition, and voice commands.  

A. Depth Sensor

The depth sensor is arguably the most innovative and
crucial component of the Kinect. It allows the device to "see" 

in three dimensions, which is fundamental for motion tracking 

and gesture recognition. The Kinect’s depth sensor 

uses infrared (IR) light to measure the distance between the 

sensor and objects in the environment. Specifically, the 
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original Kinect for Xbox 360 utilized a technology developed 

by PrimeSense, called structured light. The sensor consists of 

an infrared projector and an infrared camera. The projector 

emits a pattern of infrared light (often a dot matrix) into the 

environment. The camera then captures the reflected infrared 

light from the objects. The depth is calculated based on how 

the projected pattern is distorted when it bounces back from 

objects. By analyzing these distortions, the system determines 

the distance to various points in the scene, creating a depth 

map — a 3D representation of the environment. In the Kinect 
for Xbox One and later versions, Microsoft switched to a 

different depth-sensing technology known as Time-of-Flight 

(ToF). The ToF sensor sends out pulses of infrared light and 

measures the time it takes for the light to reflect back to the 

sensor. By calculating the time, it takes for the light to travel 

to an object and back, the sensor can accurately gauge 

distances. 

B. RGB Camera 

The Kinect also includes a standard RGB camera, similar 

to the cameras found in webcams or smartphones. The RGB 

camera captures high-resolution color images (at 640x480 

resolution for the original Kinect for Xbox 360 and 

1920x1080 resolution for the Kinect for Xbox One). This 

camera operates like any conventional digital camera, 

capturing visual data in red, green, and blue color channels. 

 

 
Fig. 1  Human Skeleton Joint 

C. Array Microphone 

The Kinect includes an array of microphones designed for 

advanced sound localization and speech recognition. The 

Kinect has a multi-microphone array (usually consisting of 

four microphones) that captures audio from the environment. 

The microphones are spaced apart on the device to allow 

for beamforming, a signal processing technique that uses the 

spatial separation between microphones to determine the 

direction of sound. The microphone array can filter out 

background noise and focus on sounds coming from a specific 

direction, such as the user’s voice, improving the quality and 

accuracy of voice commands. 

D. Body Joint 

Microsoft Kinect is a motion-sensing input device that uses 

depth-sensing technology to track human body movements in 

3D space. The image represents a 3D skeletal model with 

labeled body joints, which Kinect uses to understand and 
analyze human poses and movements. 

The head and neck joints include several anatomy points. 

Nose, Right Eye, Left Eye, Right Ear and Left Ear are useful 

as facial landmarks in establishing the orientation and 

positioning of the head. For operations tracking head position 

and movements, the head provides the central anchor. Neck 

supports the head, which is positioned above the torso and 

rotates along with head translations. 

The head and neck joints have a few important components 

joints. Nose, Right Eye, Left Eye, Right Ear, and Left Ear 

functions which serve as clutch connectors of the body, 
turning the head, jaw, and face upwards and downwards. The 

Head joint is used as the primary reference point where head 

position is monitored while the Neck joint can be considered 

as the root of head, where the head is joined and is adjusted to 

the upper torso, thereby allowing range of motion around head 

tilts and neck region. 

The joints of upper body are very important in detecting the 

body movement and gesture. The markers in this region relate 

to what is known as the clavicle joints on the left and right 

which respectively correspond to the collarbone that connects 

the neck and shoulders.(1) With shoulder joints on each side 

contributing to shoulder position and movement tracking, our 
arm movements are able to be perceived reliably. The elbow 

joints (right, left) leverage data to track the forearms, and 

wrist joints capture the position of the wrist, providing data to 

track the hands. The hand joints where both of the hands are 

located also indicate gesture interpretation. Finally, thumb 

and handtip joints located on every hand record fine details of 

hand movement. 

Since the spine and torso joints represent points of interest 

for tracking torso orientation and posture. The Spine_Chest 

joint corresponds to the upper chest or upper spine to help 

calculate the rotation of the upper torso. The Spine_Naval 
joint — near the belly button — is used to detect mid-body 

position and motion. The Pelvis joint represents the center of 

mass of the body and its position at the base of the spine 

signifies its position, making it a crucial component in 

monitoring the movements and keeping the overall posture of 

the lower body stable. 

Lower body joints are used for tracking the leg movement 

and for balance which is critical. Two joints with Right and 

Left Hip names that connect the torso to the legs and represent 

hip positions, allowing for leg movement tracking. Knee 

positions (Right and Left Knee joints) can be used to observe 
the movements of the lower legs while walking or bending. 

Right and Left Ankle joints which denote position of the ankle, 

help track foot movement and balance. The Right Foot and 

Left Foot joints, at last, display the location of the feet, shown 

in turn, they give good information for foot ground contact 

points. 

Kinect uses depth sensing, human detection, and skeletal 

mapping in order to track body joints in three steps using a 
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series of one-time steps. In the first instance, it combines the 

use of infra camera and infrared sensors in order to capture 

depth data which would in turn assist in making 3D maps of 

the area. It is through this technique that Kinect is able to 

detect human bodies through depth information by 

considering the depth as the shape of contours that fit in 

human form. After a body is tracked, it overlays a 3D skeletal 

template on the body, which uses the identifiable joint points 

on the body for the purpose of tracking the different body 

parts. Kinect generates 3D coordinates (X, Y, Z) of each joint 
with respect to the sensor allowing accurate positioning 

during movement. And this tracking activity would 

emphasize the pose of the joints until the last one. 

III. RESULT AND DISCUSSION 

The results of the development of a traditional batik cloth 

application using the Kinect sensor were obtained as shown 

in the code and image below. 
 

 
Fig. 2  Get depth- or color-camera textures 

 

This code segment grabs the depth and color textures using 

a KinectManager instance, which is the one who manages the 

operations of Kinect. It starts by creating an instance of 

the KinectManager class (KinectManager manager = 

KinectManager.Instance;) followed by a testing of Kinect 

Manager that it has been initialized properly (if (manager && 

manager.IsInitialized())). This is done in order to ensure that the 

Kinect sensor is ready to provide data before proceeding. After 

preparing the sensor, the code goes on to obtain two textures: 

‘depthTexture’ which is about the depth data —Textures are 2D 

images where each pixel is used to encode information about 
depth., which is depth data — Textures are 2D images where 

each pixel is used to encode information about 

depth. and colorTexture’ about the color of the image 

using manager. GetUsersClrTex()to get a perspective of the 

scene. In general, this code is designed to fetch and make use of 

the color and depth textures of the cameras provided in the Kinect, 

to trigger applications that are based on the depth and color data 

of the Kinect.  

 

 
Fig. 2  Get position on join body 

The following Code track and obtain the position of right 

hand (HandRight) joint of user detected by kinect. The first 

line creates a variable joint of type KinectInterop. 

KinectInterop. JointType where JointType the right hand.) 

JointType. HandRight).  

Afterwards, it creates a new example instance of 

KinectManager like so (where KinectManager. Instance;) and 

checks for manager initialization (if (manager && manager. 

(KinectSensor.KinectSensors[0]. Is Initialized())`), to make 

sure that Kinect is ready to use. 

After initialization, the code also checks for a user presence 

in the Kinect view (if (manager. IsUserDetected())). If it is 
able to detect a user, it uses manager to get the ID of the 

primary user. GetPrimaryUserID(). Having the user ID, it 

then checks if the specified joint (right hand) is being tracked 

(if (manager. JointTracked => Here we have to check if the 

joint is tracked or not (Joint Tracked => (Int, bool) ) ( e.g. 

IsJointTracked(userId, (int)joint) ). In the case that the joint is 

being tracked, the code calls `manager.  

GetJointPosition(userId, (int)joint) which returns a 

Vector3 representing the joint coordinates X, Y, Z that 

indicates the joint position that was retrieved can be used to 

drive a control over some object or initiate actions based on 
hand position activity. 

 

 
Fig. 3 Join Body 

 
Fig. 4  Special event handlers for user detection 

 

Using KinectManager, This code snippet checks real-time 

number of users represented by Kinect Sensors. It first finds 

if there is an initialized and available instance of 

KinectManager and assigns it to manager. Instance and check 

that manager is non-null and initialized. If it meets these 

requirements, it calls the manager. Below, it calls the method 

GetUsersCount() and saves the information in the variable 

usersNow. Code compares usersNow to usersSaved, a 
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variable that holds the previous number of users that were 

detected. If usersNow > usersSaved, a new user has entered 

the sensor field. Otherwise, if usersNow is less than 

usersSaved, then a user has exited the range of the sensor. The 

usersSaved variable is then updated with what is currently in 

usersNow, since it gets used again in the next cycle, this 

ensures we are only tracking the changes. It also allows for 

quickly identifying when users are added or removed. 

 

 
Fig. 5  User Detection 

 

 
Fig. 6  Mapping Coordinate 

 

This code processes depth data coming from a Kinect 

sensor getting depth image coordinates and converting them 

from depth coordinates to color coordinates and back from 

color coordinates to real depth coordinates. It starts by trying 

to get a depth frame with e.FrameReference. which is to 

acquire the frame through AcquireFrame() and verify whether 

it is successful. If so, the frame data is copied into the 
specified memory location (depthImage. A pointer to a buffer 

containing the raw image data (IntPtr), formatted according to 

the spatial resolution of the Kinect’s depth image. Next, given 

the depth image, the code chooses a point (100, 100)` to check 

its depth value, and determine whether or not it is a valid point 

(non-zero). It goes on to say if zero is passed then the enter 

depth and it returns from the code. 

If the depth is a valid depth value, it is converted from 

millimeters to meters by dividing from 1000 to match the 

expected depth from Kinect SDK output units. Next, the 

calibration object uses its DepthImageToColorImage method 
to map the (100, 100) depth image coordinates to (colorx, 

colory) color image coordinates. An optional distortion 

lookup table can be passed to accelerate conversions. (The 

corresponding line is commented out in the code). 

Next, a similar transformation is conducted using the 

Kinect SDK's CoordinateMapper to map the same depth 

image coordinates to color space, providing a basis for 

comparison. The depth image coordinates are then converted 

back to their original values using ColorImageToDepthImage 

and printed, helping to confirm the accuracy of the round-trip 

conversion process. This code enables precise calibration and 

point mapping between Kinect’s depth and color image 
spaces, important for applications requiring synchronized 

depth and color data alignment. 

 

 
Fig. 7  User Coordinate 

 

It is necessary to pay attention to the Kinect positioning 

technique which has an important role so that 3D objects and 

models can match. Then you can add model gender 

recognition, so you can determine which traditional clothing 

appears automatically according to gender. This is done to get 
a better UI/UX 

IV. CONCLUSION 

The Microsoft Kinect’s body tracking technology 

represents a paradigm shift in the way computers perceive and 

interact with humans. Its advancements in depth sensing, 

skeletal tracking, and machine learning have broadened the 

scope of real-time body tracking, making it more accessible, 

accurate, and versatile. This technology continues to inspire 
new applications and innovations across a multitude of sectors, 

fundamentally changing human-computer interaction and 

setting the stage for the next generation of interactive systems. 
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