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Abstract—Outliers hurt the accuracy of life distribution parameters, including the Weibull distribution. Therefore, researchers have 

suggested employing the fast minimum covariance determinant method in rank regression estimators (which are robust but not 

efficient) to obtain robust estimators for the shape and scale parameters of the Weibull distribution. The proposed method is based on 

the robust means vector and the robust covariance matrix obtained from the fast minimum covariance determinant method, and it 

employs the rank regression estimation method, which depends on the ordinary least squares estimators of the simple linear regression 

model. The estimated parameters of the Weibull distribution obtained using the proposed technique have been compared with those 

derived from conventional maximum likelihood estimation and rank regression, using mean square error as the comparison metric, via 

both simulation and real data. The study's findings demonstrated the efficacy of the proposed strategy in addressing outliers and 

yielding highly effective estimators for the shape and scale parameters of the Weibull distribution. 
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I. INTRODUCTION

A statistical distribution that describes the expected time 

until a significant event occurs, such as the death of an 

organism, the failure of a mechanical component, or the time 

required to complete a task is a lifetime distribution [1]. These 

distributions are widely used in reliability engineering 

(Scheduling maintenance, estimating the lifespan of systems, 

and improving product designs), risk management, and 

survival analysis (time-to-event data in the medical study, as 

the time until recurrence of the disease or death). Known 

lifetime distributions included Weibull, exponential, Normal, 

lognormal, Gamma, and Gompertz distributions [2]. Weibull 

distribution is a flexible distribution that can model 

decreasing, constant, or increasing mean time to failure and 

includes two parameters, shape and scale [3]. The nature of 

the failure average determines the shape parameter (for 

example, the increasing failure average for a shape parameter 

greater than one). 

On the other hand, outliers are a significant challenge that 

affects the precision of parameter estimation for life 

distributions, including the Weibull distribution. Maximum 

likelihood estimators are ineffective in estimating the 

parameters of a mathematical distribution when outliers are 

present, but the rank regression technique, which relies on the 

linear function of the Weibull distribution parameters, exhibits 

a degree of robustness to outliers. (Boudt et al. [4] proposed 

three robust Weibull distribution parameter estimators: the 

quantile regression, the median/Qn estimator, and the 

repeated median estimator. Derived their breakdown point, 

asymptotic variance, and influence function.  

The methods are illustrated on real Weibull distribution 

data affected by outliers. Coria et al. [5] proposed estimating 

both parameters straightforwardly for the Weibull 

distribution. they analyzed right-censored lifetime data sets 

with varying sample sizes and censoring percentages to 

evaluate the effectiveness of the proposed estimator. 

demonstrate that the parameter estimator yields a high level 

of accuracy. Sinha, [6] proposed the robust method for fitting 

the accelerated failure time model to Weibull distribution data 

by determining the influence of outliers in both the response 

variable and associated covariates.  

The finite-sample properties of the estimators are 

investigated based on simulated results and the real data from 

breast cancer patients. Roohanizadeh et al. [7] delineated 

various estimation methodologies for the two-parameter 

Weibull distribution utilizing intuitionistic fuzzy lifetime data, 

encompassing maximum likelihood estimation (employing 
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Newton-Raphson and Expectation-Maximization techniques) 

and Bayesian estimation (utilizing Tierney and Kadane’s 

approximation for the shape and scale parameters, with 

Gamma and inverse-Gamma priors, respectively). The 

simulation is conducted to identify the most efficient 

estimator inside the intuitionistic fuzzy methodology. 

Gómez et al. [8] delineated five parameters of the Weibull 

distribution, each derived from distinct moments of the mean, 

quantile, and mode. Furthermore, it explores the meaning of 

regression results when integrating linear regression models 

into these parameters. They provided insights into its 

implications for modelling failure periods and its prospective 

contributions to disciplines that require reliability and 

survival analysis. In this paper, the proposed method is based 

on the robust means vector and the robust covariance matrix 

obtained from the fast minimum covariance determinant 

method, and it employs the rank regression estimation method 

that depends on the ordinary least squares estimators of the 

simple linear regression model. 

II. MATERIAL AND METHOD 

A. Fast Minimum Covariance Determinant  

The Fast Minimum Covariance Determinant (FMCD) 

method, as presented by Rousseeuw and Leroy [9], is a 

modification of the minimum covariance determinant (MCD). 

This method selects l data points from a total of N, where N/2 

< l ≤ N, to achieve the least possible determinant from the 

classical variance-covariance matrix. The estimate comprises 

the mean vector and covariance matrix of the defined l points, 

adjusted by a consistency value to ensure adherence to the 

multivariate normal distribution (MND), along with a 

correction value to address bias in small sample sizes. Based 

on this, the estimates of the robust mean vector (MR) and the 

robust variance-covariance matrix (SR) are calculated to be 

resilient against outliers. These estimators can be configured 

to achieve a theoretically maximal breakdown point of 50%. 

This configuration enables the detection of outliers, even 

when their quantity approaches nearly half of the sample size 

[10]. 

The purpose of MCD is to identify h observations (out of N) 

that minimize the determinant of the classical covariance. The 

MCD estimate of location is the mean of these h points, 

whereas the MCD estimate of dispersion is represented by their 

covariance matrix. The resultant breakdown value is equivalent 

to that of the minimal-volume ellipsoid (MVE); however, the 

minimum covariance determinant (MCD) offers significant 

benefits over the MVE, as it exhibits superior statistical 

efficiency due to its asymptotic normality. [11].  

A novel method for the MCD, termed FMCD, has been 

developed to address such issues. The fundamental concept 

involves an inequality involving order statistics and 

determinants, using methods known as "selective iteration" or 

"nested extensions". FMCD generally identifies the precise 

MCD for small datasets, but for larger datasets it yields more 

accurate results than current methods and runs much more 

quickly. FMCD can identify a precise hyperplane that 

encompasses h or more observations. The algorithm makes 

the MCD technique a standard instrument for analyzing 

multivariate data [12]. 

 

B. Weibull Distribution 

The Weibull distribution is a probability distribution 

commonly used in reliability engineering and survival 

analysis to model the time to a specific event. It is named after 

Walloddi Weibull, who introduced it in the mid-20th century 

[13]. The distribution is characterised by two parameters: the 

shape parameter (often denoted as "β") and the scale 

parameter (often denoted as "η"). The probability density 

function (PDF) of the Weibull distribution is expressed as 

[14]: 

 ���� =  �� 	
����
 ��	����
 (1) 

Where:  

���� ≥ 0, � ≥ 0,   � ≥ 0, � ≥ 0 

C. The Estimation 

Determining the values of the parameters that best fit the 

observed data to a probability distribution is essential for 

estimation [15]. The selection of the estimation technique 

depends on the distribution you are addressing. This section 

will focus on the techniques used to estimate the parameters 

of the two-parameter Weibull distribution, as employed in this 

study. 

1) Maximum Likelihood Estimation: Maximum 

likelihood estimation (MLE) is a prevalent and robust 

technique for parameter estimation over several distributions. 

Maximum Probability Estimation (MLE) seeks to identify 

parameter values that optimize the probability of the observed 

data [16], [17]. The equations for the partial derivatives of the 

log-likelihood function are formulated and shown below: 

∂Λ∂β = �β + � �� ����  − � ����  � �� ����  = 0"
�#


"
�#
  

And: 

∂Λ∂� = −β� . � + β� � ����  � = 0"
�#
  

Solving the above equations simultaneously, we obtain the 

estimated parameter values.  

2) Rank Regression on Y: Conducting rank regression 

(RRY) involves mathematically fitting a straight line to a 

collection of data points in a manner that minimizes the sum 

of the squares of the vertical deviations from the points to the 

line [18]. This methodology mirrors the probability plotting 

method; however, it employs the principle of least squares to 

ascertain the line through the points rather than relying on 

visual estimation. The initial step involves transforming our 

function into a linear format [19]. For the two-parameter 

Weibull distribution, the cumulative density function is: 

 %��� = 1 − ��	����
 (2) 

Applying the natural logarithm to both sides of the equation 

results [20]: 

��'1 − %���( = − ��� �
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��)−��'1 − %���(* = ��� ��� = −������ + ������ 

Now let: 

 + = ��)−��'1 − %���(* (3) 

And: 

 , = � (4) 

which results in the linear equation of: 

 + = - + ,�  

The technique of least squares parameter estimation, which 

is sometimes referred to as regression analysis, was covered 

in the article on parameter estimation [13], [21], and the 

equations for regression on Y were constructed as follows: 

 -. = + / −  , 0 �̅ (5) 

And:  

,̑ = 3̑456 5
   
 3̑ = 7�897�×78     ;   5 = � 5
 5
656
 56    (6) 

The sample variances are located on the main diagonal of 

the matrix S, whereas the sample covariances are situated on 

the off-diagonal of the matrix S. In this case, the equations for 

yi and xi are: 

+� = ��)−��'1 − %����(* 

And: 

�� = ������ 
The F(Xi) values are derived from the median ranks (MR). 

The Median Ranks approach is used to quantify the 

unreliability associated with each failure. The median rank 

represents the genuine probability of failure, Q(Xj), at the jth 

failure among a sample of N units, corresponding to the 50% 

confidence level [22]. An alternative and simpler approach to 

determining median ranks involves applying two 

transformations to the cumulative binomial equation, namely 

the Beta and F Distribution Approach [23], first to the beta 

distribution and then to the F distribution. 

 <= = 

>��?�@>
� @⁄ �BC.DC; E; F (7) 

 

Where m = 2(N-j+1) and n = 2j. F0.50; m; n is the F distribution 

for 0.50 point (m and n degrees of freedom), for failure j from 

N units. 

 

The estimated parameters are: 

 � 0 = ,G  (8) 

 �̂ = ��I. JG⁄  (9) 

3) Proposed Method: To deal with the outlier problem, 

the proposed method employs the robust mean vector, and the 

robust covariance matrix calculated by the Fast Minimum 

Covariance Determinant (FMCD) method in the rank 

regression method to get the Robust Rank Regression of 

dependent Y (RRRY) estimate Weibull distribution 

parameters through the following. 

• Let x = Log(T), where T represents the failure time, is 

ranked in ascending order, and x is (n × 1) vector. 

• Compute the cumulative density function %���� from 

the median ranks (MR) in equation (7). 

•  + =  KLM 	−KLMN1 − %����O� and y is (n × 1)  vector. 

• D represents (n × 2) matrix for x and y. 

• The robust mean vector and covariance matrix (MR and 

SR, respectively) are calculated by the FMCD method 

(from paragraph 2.1): 

 MR =  'xSR ySR(, and SR =  V SxR SxyRSyxR SyR W  

• The discussion centered around the least squares 

parameter estimation method applied to the estimation 

of Weibull distribution parameters, leading to the 

formulation of the following linear equation: 

 y = aR + bRx  

 b̑R = 3̑RZ[\][^]  (10) 

Where: 

3̑R = SxyR
9SxR × SyR    

And: 

 a.R = ySR − bGR × xS R (11) 

• Finally, the proposed estimation for the shape and scale 

parameters of the Weibull distribution is: 

 � 0 = bGR (12) 

 �̂ = ��_.] 0̀]⁄  (13) 

D. Mean Squares Error 

The efficacy of the estimated parameters may be assessed 

using the mean squared error (MSE), which yields the 

minimal value for the estimated parameters aG with optimal 

efficiency, calculable by the following formula [24] 

 <5b =  ∑ Nd0e�dOfEegh i  (14) 

where a   represents real parameters (proposed using 

simulation) and a = '� �(, and m is the number of samples. 

E. Application Aspect 

To prove the efficiency of the proposed method (RRRY) in 

estimating the shape and scale parameters of the Weibull 

distribution and to compare it with some classical methods 

(MLE and RRY), simulations were used in addition to real 

data, as follows: 

F. Simulation Study  

Data having a Weibull distribution with the shape and scale 

parameters (for several different values) and for several 
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sample sizes (50, 100, 200, 300, 400, and 500) were generated 

using a program designed for this purpose in the MATLAB 

language, in addition, creating a program that calculates the 

cumulative function of the median ranks at any sample size 

based on the beta and F distribution approach (Appendix). 

Also, outliers have been added to the generated data.  

 

 
Fig. 1  Mahalanobis distance for the first simulation experiment 

 
The initial simulation experiment utilizing Mahalanobis 

distance values is presented in Figure 1 for the FMCD 

method, revealing a total of 15 outliers among the 50 

generated data points. To compare the proposed method 

(RRRY) and classical methods (MLE and RRY), the 

simulation experiments were repeated (1000) times, the 

parameters of the Weibull distribution were estimated, and the 

MSE average (for MSE(Beta) and MSE(Eta)) and Error Mean 

were calculated. The results were summarized in Tables 1-4: 

TABLE I 

MSE AVERAGE WHEN BETA = 2 & ETA = 20 

Sample 

Size Criterion 
MLE RRY RRRY 

MSE Parameters MSE Parameters MSE Parameters 

50 

MSE(Beta) 1.1937 3.0926 0.6833 2.8266 0.1428 2.3779 

MSE(Eta) 138.6521 31.7751 123.9135 31.1316 8.7389 22.9562 

Error Mean 69.9229  62.2984  4.4408  

100 

MSE(Beta) 0.9520 2.9757 0.3373 2.5808 0.0726 2.2694 

MSE(Eta) 35.9755 25.9980 28.5627 25.3444 2.5572 21.5991 

Error Mean  18.4638  14.4500  1.3149  

200 

MSE(Beta) 0.7108 2.8431 0.1355 2.3681 0.0310 2.1761 

MSE(Eta) 10.1083 23.1794 7.2261 22.6881 0.9234 20.9609 

Error Mean  5.4096  3.6808  0.4772  

300 

MSE(Beta) 0.5857 2.7653 0.0747 2.2733 0.0217 2.1473 

MSE(Eta) 4.7816 22.1867 3.2973 21.8158 0.5456 20.7386 

Error Mean  2.6837  1.6860  0.2836  

400 

MSE(Beta) 0.5023 2.7087 0.0482 2.2195 0.0148 2.1217 

MSE(Eta) 2.7358 21.6540 1.8789 21.3707 0.3984 20.6312 

Error Mean  1.6191  0.9635  0.2066  

500 

MSE(Beta) 0.4394 2.6629 0.0339 2.1841 0.0127 2.1127 

MSE(Eta) 1.7962 21.3402 1.2483 21.1173 0.3029 20.5504 

Error Mean  1.1178  0.6411  0.1578  

TABLE II 

MSE AVERAGE WHEN BETA = 5 & ETA = 20 

Sample Size 
Criterion 

MLE RRY RRRY 

MSE Parameters MSE Parameters MSE Parameters 

50 

MSE(Beta) 16.1022 9.0128 14.5530 8.8148 0.8855 5.9410 

MSE(Eta) 216.0218 34.6977 265.9051 36.3066 1.2746 21.1290 

Error Mean 116.0620  140.2290  1.0801  

100 

MSE(Beta) 15.0043 8.8735 11.6083 8.4071 0.4561 5.6754 

MSE(Eta) 67.4139 28.2106 75.1310 28.6678 0.3925 20.6265 

Error Mean  41.2091  43.3696  0.4243  

200 

MSE(Beta) 13.7319 8.7057 7.9472 7.8191 0.1941 5.4406 

MSE(Eta) 23.3910 24.8364 21.1394 24.5978 0.1442 20.3797 

Error Mean  18.5615  14.5433  0.1692  
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Sample Size 
Criterion 

MLE RRY RRRY 

MSE Parameters MSE Parameters MSE Parameters 

300 

MSE(Beta) 12.9651 8.6007 5.8134 7.4111 0.1364 5.3693 

MSE(Eta) 12.8897 23.5902 9.9037 23.1470 0.0856 20.2926 

Error Mean  12.9274  7.8586  0.1110  

400 

MSE(Beta) 12.3987 8.5212 4.4329 7.1054 0.0935 5.3058 

MSE(Eta) 8.3988 22.8981 5.6917 22.3857 0.0627 20.2504 

Error Mean  10.3987  5.0623  0.0781  

500 

MSE(Beta) 11.9515 8.4571 3.4865 6.8672 0.0799 5.2827 

MSE(Eta) 6.0489 22.4595 3.7043 21.9247 0.0481 20.2193 

Error Mean  9.0002  3.5954  0.0640  

TABLE III 

MSE AVERAGE WHEN BETA = 2 & ETA = 30 

Sample 

Size 
Criterion 

MLE RRY RRRY 

MSE Parameters MSE Parameters MSE Parameters 

50 

MSE(Beta) 1.1937 3.0926 0.6833 2.8266 0.1428 2.3779 

MSE(Eta) 311.9672 47.6626 278.8053 36.6975 9.6624 33.1084 

Error Mean 156.5805  139.7443  4.9026  

100 

MSE(Beta) 0.9520 2.9757 0.3373 2.5808 0.0726 2.2694 

MSE(Eta) 80.9450 38.9969 64.2662 38.0166 5.7538 32.3987 

Error Mean  40.9485  32.3017  2.9132  

200 

MSE(Beta) 0.7108 2.8431 0.1355 2.3681 0.0310 2.1761 

MSE(Eta) 22.7436 34.7690 16.2588 34.0322 2.0777 31.4414 

Error Mean  11.7272  8.1972  1.0544  

300 

MSE(Beta) 0.5857 2.7653 0.0747 2.2733 0.0217 2.1473 

MSE(Eta) 10.7586 33.2800 7.4188 32.7237 1.2275 31.1079 

Error Mean  5.6722  3.7468  0.6246  

400 

MSE(Beta) 0.5023 2.7087 0.0482 2.2195 0.0148 2.1217 

MSE(Eta) 6.1555 32.4810 4.2275 32.0561 0.8965 30.9468 

Error Mean  3.3289  2.1378  0.4556  

500 

MSE(Beta) 0.4394 2.6629 0.0339 2.1841 0.0127 2.1127 

MSE(Eta) 4.0414 32.0103 2.8086 31.6759 0.6815 30.8255 

Error Mean  2.2404  1.4213  0.3471  

TABLE IV 

MSE AVERAGE WHEN BETA = 5 & ETA = 30 

Sample 

Size 
Criterion 

MLE RRY RRRY 

MSE Parameters MSE Parameters MSE Parameters 

50 

MSE(Beta) 16.1022 9.0128 14.5530 8.8148 0.8855 5.9410 

MSE(Eta) 486.0491 52.0465 598.2864 54.4599 2.8679 31.6935 

Error Mean 251.0756  306.4197  1.8767  

100 

MSE(Beta) 15.0043 8.8735 11.6083 8.4071 0.4561 5.6754 

MSE(Eta) 151.6813 42.3159 169.0447 43.0017 0.8832 30.9398 

Error Mean  83.3428  90.3265  0.6696  

200 

MSE(Beta) 13.7319 8.7057 7.9472 7.8191 0.1941 5.4406 

MSE(Eta) 52.6298 37.2546 47.5637 36.8966 0.3244 30.5696 

Error Mean  33.1809  27.7555  0.2593  

300 

MSE(Beta) 12.9651 8.6007 5.8134 7.4111 0.1364 5.3693 

MSE(Eta) 29.0017 35.3853 22.2834 34.7205 0.1926 30.4389 

Error Mean  20.9834  14.0484  0.1645  

400 

MSE(Beta) 12.3987 8.5212 4.4329 7.1054 0.0935 5.3058 

MSE(Eta) 18.8972 34.3471 12.8062 33.5786 0.1411 30.3756 

Error Mean  15.6479  8.6196  0.1173  

500 

MSE(Beta) 11.9515 8.4571 3.4865 6.8672 0.0799 5.2827 

MSE(Eta) 13.6100 33.6892 8.3346 32.8870 0.1081 30.3288 

Error Mean  12.7807  5.9105  0.0940  

III. RESULTS AND DISCUSSION 

The results of Tables 1-4 show the following: 

• The proposed (FMCD) method (RRRY) outperformed 

the classical methods (MLE and RRY), depending on 

MSE and Error Mean for all simulation cases. 

• The accuracy of the shape parameter estimates was 

better than the scale parameter estimates for the three 

methods and all simulation cases. 

• The accuracy of estimating Weibull distribution 

parameters increases when the sample size increases. 

• The accuracy of estimating the Weibull distribution 

shape parameter decreases as its assumed value 

increases for all simulation cases. 
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• The accuracy of the scale parameter estimation of the 

Weibull distribution decreases as its assumed value 

increases for all simulation cases. 

• The estimate of the shape parameter remains unaffected 

by an increase in the scale parameter, whereas the 

estimate of the scale parameter is influenced by an 

increase in the shape parameter. 

• The Error Mean indicates the superiority of the 

proposed method (RRRY) over the classical methods 

(RRY and MLE), while the classical method (RRY) is 

superior to the classical method (MLE). 

Figure 2 shows the error means from 100 repeated 

experiments for the three methods. The green line represents 

the proposed method (RRRY), and the red line represents the 

classical method (RRY). The blue line represents the classical 

method (MLE), which shows the efficiency of the proposed 

method compared to classical methods; the classical method 

(RRY) outperformed the classical method (MLE). 
 

 

Fig. 2  Error Mean for the three methods 

 

A. Real data  

The real data set examined the survival times, measured in 

days, of guinea pigs infected with virulent tubercle bacilli, as 

summarized by Bjerkedal. The information can be found in 

the Appendix. The Mahalanobis distance values are presented 

in Figure 3 for the FMCD method, revealing that 30 outliers 

were identified from a total of 74 generated data points. 

 

Fig. 3  Mahalanobis distance for the real data 

 
Following the estimation of the shape and scale parameters 

of the Weibull distribution using the three methods, these 

parameters are applied to estimate survival times (expected 

values). Subsequently, a goodness-of-fit test, specifically the 

Chi-Square test, is employed to evaluate the efficiency of the 

estimated models. This evaluation measures the model's 

overall adequacy by contrasting the observed data against the 

predicted values generated by the model. The p-value derived 

from this test quantifies the statistical significance of the 

discrepancies between the observed and predicted values. By 

conducting statistical tests, we can thoroughly assess the 

validity of the proposed model. The model demonstrating the 

optimal fit is identified by the lowest Chi-Square values and 

non-significant p-values derived from the test statistic, 

thereby rendering it the most appropriate choice for the 

specified data set. Table 5 summarizes the estimation and 

testing results for the three methods, and shows that the 

proposed method (RRRY) was better than classical methods 

(RRY and MLE) because the value of the test statistic was 

equal to (10.627), which is less than the critical value (12.592) 

under significance level (0.05) and the degrees of freedom (6), 

(also, it less than test statistics 23.978 and 13.969 for classical 

models), and this is confirmed by the p-value (0.101), which 

was not significant, indicating the efficiency of the proposed 

model. While the classical models (RRY and MLE) were 

inefficient, because the value of the test statistic was equal to 

(23.978 and 13.969) respectively, which is more than the 

critical value (11.070) under significance level (0.05), and the 

degrees of freedom (5), and this is confirmed by the p-value 

(0.000 and 0.016) respectively, which was significant.  
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TABLE V 

RESULTS OF ANALYSIS FOR THE REAL DATA 

Method Shape parameter (beta) Scale parameter (eta) 
Chi-Square 

Statistic 
p-value 

Critical 

Value 

Degrees of 

freedom 

MLE 1.3222 2.2383 23.978 0.000 11.070 5 

RRY 1.6635 2.2141 13.969 0.016 11.070 5 

RRRY 1.7123 1.9129 10.627 0.101 12.592 6 
Figure 4 shows the probability density function of the Weibull distribution using the proposed method (RRRY). 

 
Fig. 4  The probability density function of the Weibull distribution 

 

IV. CONCLUSION 

The robust proposed (Fast Minimum Covariance 

Determinant) method (RRRY) outperformed the classical 

method (MLE and RRY), depending on MSE and Error Mean 

for all simulation cases and real data when there are outliers. 

The accuracy of the shape parameter estimates was better than 

that of the scale parameter estimates for the three methods and 

all simulation cases with outliers. The accuracy of estimating 

Weibull distribution parameters increases with sample size 

across all simulation cases. The accuracy of estimating the 

Weibull distribution shape parameter decreases as its assumed 

value increases, and the accuracy of estimating the Weibull 

distribution parameter decreases as its assumed value 

increases across all simulation cases. The estimate of the 

shape parameter remains accurate regardless of an increase in 

the scale parameter, whereas the estimate of the scale 

parameter is influenced by an increase in the shape parameter. 

The proposed method (RRRY) is superior to the classical 

methods (RRY and MLE), while the classical method (RRY) 

is superior to the classical method (MLE), depending on the 

Error Mean for all simulation cases when there are outliers. 

Using the robust rank regression method to estimate a two-

parameter Weibull distribution when there are outliers. 

Executing a prospective study employing the robust rank 

regression technique to estimate the three-parameter Weibull 

distribution. Conducting a prospective study using the robust 

rank regression method to estimate parameters' normal and 

exponential distribution. 
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APPENDIX 

0.10 0.74 1.00 1.08 1.16 1.30 1.53 1.71 1.97 2.23 2.54 3.47 10.53 

0.33 0.77 1.02 1.08 1.20 1.34 1.59 1.72 2.02 2.31 2.54 3.61 12.80 

0.44 0.92 1.05 1.09 1.21 1.36 1.60 1.76 2.13 2.40 2.78 4.02  

0.56 0.93 1.07 1.12 1.22 1.39 1.63 1.83 2.15 2.45 2.93 4.32  

0.59 0.96 1.07 1.13 1.22 1.44 1.63 1.95 2.16 2.51 3.27 4.58  

0.72 1.00 1.08 1.15 1.24 1.46 1.68 1.96 2.22 2.53 3.42 5.55  

THE PROGRAM 

clc 

clear all 

% rng default 

n=500;beta=5;eta=30;EX=[beta eta]; 

for j=1:1000 

T = wblrnd(eta,beta,n,1); % Simulated strengths; 

noise = randperm(n,5); T(noise) = T(noise)*10; T=sort(T); x=log(T); 

% Compute F(t) 

for i=1:n 

    v1=2*(n-i+1); v2=2*i; f(i)=finv(.5,v1,v2); F(i)=1/(1+((n-i+1)/i)*f(i)); 

end 

y=log(-log(1-F));y=y';h=[x y]; [C M]=robustcov(h,"Method","fmcd");  

SYY=C(2,2); SXX=C(1,1); SXY=C(1,2); RhoR=SXY/sqrt(SXX*SYY); 

b=sqrt(SYY/SXX)*RhoR; a=M(1,2)-M(1,1)*b; betarrry=b; etarrry=exp(-(a/b)); C =cov(h);  

SYY=C(2,2); SXX=C(1,1); SXY=C(1,2); Rho=SXY/sqrt(SXX*SYY); 

b=sqrt(SYY/SXX)*Rho; a=mean(y)-mean(x)*b; betarry=b; etarry=exp(-(a/b)); 

para= wblfit(T); etamle=para(1,1); betamle=para(1,2); parametermle=[betamle etamle]; 

EMLE(j,:)=abs(parametermle-EX); ERRY(j,:)=abs([betarry etarry]-EX); 

ERRRY(j,:)=abs([betarrry etarrry]-EX); E1(j,:)=EMLE(j,:).^2; E2(j,:)=ERRY(j,:).^2; 

E3(j,:)=ERRRY(j,:).^2; 

end 

MSEMLE=sum(E1)/1000, MSERRY=sum(E2)/1000, MSERRRY=sum(E3)/1000 

E11= mean(E1'); E22= mean(E2'); E33= mean(E3'); MMLE=mean(MSEMLE) 

MRRY=mean(MSERRY), MRRRY=mean(MSERRRY)  
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