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Abstract—Outliers hurt the accuracy of life distribution parameters, including the Weibull distribution. Therefore, researchers have
suggested employing the fast minimum covariance determinant method in rank regression estimators (which are robust but not
efficient) to obtain robust estimators for the shape and scale parameters of the Weibull distribution. The proposed method is based on
the robust means vector and the robust covariance matrix obtained from the fast minimum covariance determinant method, and it
employs the rank regression estimation method, which depends on the ordinary least squares estimators of the simple linear regression
model. The estimated parameters of the Weibull distribution obtained using the proposed technique have been compared with those
derived from conventional maximum likelihood estimation and rank regression, using mean square error as the comparison metric, via
both simulation and real data. The study's findings demonstrated the efficacy of the proposed strategy in addressing outliers and

yielding highly effective estimators for the shape and scale parameters of the Weibull distribution.
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1. INTRODUCTION

A statistical distribution that describes the expected time
until a significant event occurs, such as the death of an
organism, the failure of a mechanical component, or the time
required to complete a task is a lifetime distribution [1]. These
distributions are widely used in reliability engineering
(Scheduling maintenance, estimating the lifespan of systems,
and improving product designs), risk management, and
survival analysis (time-to-event data in the medical study, as
the time until recurrence of the disease or death). Known
lifetime distributions included Weibull, exponential, Normal,
lognormal, Gamma, and Gompertz distributions [2]. Weibull
distribution is a flexible distribution that can model
decreasing, constant, or increasing mean time to failure and
includes two parameters, shape and scale [3]. The nature of
the failure average determines the shape parameter (for
example, the increasing failure average for a shape parameter
greater than one).

On the other hand, outliers are a significant challenge that
affects the precision of parameter estimation for life
distributions, including the Weibull distribution. Maximum
likelihood estimators are ineffective in estimating the
parameters of a mathematical distribution when outliers are
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present, but the rank regression technique, which relies on the
linear function of the Weibull distribution parameters, exhibits
a degree of robustness to outliers. (Boudt et al. [4] proposed
three robust Weibull distribution parameter estimators: the
quantile regression, the median/Qn estimator, and the
repeated median estimator. Derived their breakdown point,
asymptotic variance, and influence function.

The methods are illustrated on real Weibull distribution
data affected by outliers. Coria et al. [5] proposed estimating
both parameters straightforwardly for the Weibull
distribution. they analyzed right-censored lifetime data sets
with varying sample sizes and censoring percentages to
evaluate the -effectiveness of the proposed estimator.
demonstrate that the parameter estimator yields a high level
of accuracy. Sinha, [6] proposed the robust method for fitting
the accelerated failure time model to Weibull distribution data
by determining the influence of outliers in both the response
variable and associated covariates.

The finite-sample properties of the estimators are
investigated based on simulated results and the real data from
breast cancer patients. Roohanizadeh et al. [7] delineated
various estimation methodologies for the two-parameter
Weibull distribution utilizing intuitionistic fuzzy lifetime data,
encompassing maximum likelihood estimation (employing



Newton-Raphson and Expectation-Maximization techniques)
and Bayesian estimation (utilizing Tierney and Kadane’s
approximation for the shape and scale parameters, with
Gamma and inverse-Gamma priors, respectively). The
simulation is conducted to identify the most efficient
estimator inside the intuitionistic fuzzy methodology.

Gomez et al. [8] delineated five parameters of the Weibull
distribution, each derived from distinct moments of the mean,
quantile, and mode. Furthermore, it explores the meaning of
regression results when integrating linear regression models
into these parameters. They provided insights into its
implications for modelling failure periods and its prospective
contributions to disciplines that require reliability and
survival analysis. In this paper, the proposed method is based
on the robust means vector and the robust covariance matrix
obtained from the fast minimum covariance determinant
method, and it employs the rank regression estimation method
that depends on the ordinary least squares estimators of the
simple linear regression model.

II. MATERIAL AND METHOD

A. Fast Minimum Covariance Determinant

The Fast Minimum Covariance Determinant (FMCD)
method, as presented by Rousseeuw and Leroy [9], is a
modification of the minimum covariance determinant (MCD).
This method selects 1 data points from a total of N, where N/2
<1< N, to achieve the least possible determinant from the
classical variance-covariance matrix. The estimate comprises
the mean vector and covariance matrix of the defined I points,
adjusted by a consistency value to ensure adherence to the
multivariate normal distribution (MND), along with a
correction value to address bias in small sample sizes. Based
on this, the estimates of the robust mean vector (MR) and the
robust variance-covariance matrix (SR) are calculated to be
resilient against outliers. These estimators can be configured
to achieve a theoretically maximal breakdown point of 50%.
This configuration enables the detection of outliers, even
when their quantity approaches nearly half of the sample size
[10].

The purpose of MCD is to identify h observations (out of N)
that minimize the determinant of the classical covariance. The
MCD estimate of location is the mean of these h points,
whereas the MCD estimate of dispersion is represented by their
covariance matrix. The resultant breakdown value is equivalent
to that of the minimal-volume ellipsoid (MVE); however, the
minimum covariance determinant (MCD) offers significant
benefits over the MVE, as it exhibits superior statistical
efficiency due to its asymptotic normality. [11].

A novel method for the MCD, termed FMCD, has been
developed to address such issues. The fundamental concept
involves an inequality involving order statistics and
determinants, using methods known as "selective iteration" or
"nested extensions". FMCD generally identifies the precise
MCD for small datasets, but for larger datasets it yields more
accurate results than current methods and runs much more
quickly. FMCD can identify a precise hyperplane that
encompasses h or more observations. The algorithm makes
the MCD technique a standard instrument for analyzing
multivariate data [12].
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B. Weibull Distribution

The Weibull distribution is a probability distribution
commonly used in reliability engineering and survival
analysis to model the time to a specific event. It is named after
Walloddi Weibull, who introduced it in the mid-20th century
[13]. The distribution is characterised by two parameters: the
shape parameter (often denoted as "B") and the scale
parameter (often denoted as "n"). The probability density
function (PDF) of the Weibull distribution is expressed as
[14]:
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Where:
f(x) =0,

C. The Estimation

Determining the values of the parameters that best fit the
observed data to a probability distribution is essential for
estimation [15]. The selection of the estimation technique
depends on the distribution you are addressing. This section
will focus on the techniques used to estimate the parameters
of the two-parameter Weibull distribution, as employed in this
study.

x>0, 20, 17 =0

1) Maximum  Likelihood  Estimation:  Maximum
likelihood estimation (MLE) is a prevalent and robust
technique for parameter estimation over several distributions.
Maximum Probability Estimation (MLE) seeks to identify
parameter values that optimize the probability of the observed
data [16], [17]. The equations for the partial derivatives of the
log-likelihood function are formulated and shown below:
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Solving the above equations simultaneously, we obtain the
estimated parameter values.

2) Rank Regression on Y: Conducting rank regression
(RRY) involves mathematically fitting a straight line to a
collection of data points in a manner that minimizes the sum
of the squares of the vertical deviations from the points to the
line [18]. This methodology mirrors the probability plotting
method; however, it employs the principle of least squares to
ascertain the line through the points rather than relying on
visual estimation. The initial step involves transforming our
function into a linear format [19]. For the two-parameter
Weibull distribution, the cumulative density function is:
x)ﬁ

F(x)=1- e‘(ﬁ )

Applying the natural logarithm to both sides of the equation
results [20]:

In[1 - F(x)] = — (%)ﬁ
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which results in the linear equation of:

y=a-+bx

The technique of least squares parameter estimation, which
is sometimes referred to as regression analysis, was covered
in the article on parameter estimation [13], [21], and the
equations for regression on Y were constructed as follows:

d=y—bx 5)
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The sample variances are located on the main diagonal of
the matrix S, whereas the sample covariances are situated on
the off-diagonal of the matrix S. In this case, the equations for
yiand x; are:

yi = In{=In[1 - F(x)]}
And:
x; = In(x;)

The F(Xi) values are derived from the median ranks (MR).
The Median Ranks approach is used to quantify the
unreliability associated with each failure. The median rank
represents the genuine probability of failure, Q(Xj), at the jth
failure among a sample of N units, corresponding to the 50%
confidence level [22]. An alternative and simpler approach to
determining median ranks involves applying two
transformations to the cumulative binomial equation, namely
the Beta and F Distribution Approach [23], first to the beta
distribution and then to the F distribution.

1

MR = 1+((N—j+1)/j)Fo.50;m;n

)

Where m = 2(N-j+1) and n = 2j. Fo50. m; n1s the F distribution
for 0.50 point (m and n degrees of freedom), for failure j from
N units.

The estimated parameters are:
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3) Proposed Method: To deal with the outlier problem,
the proposed method employs the robust mean vector, and the
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robust covariance matrix calculated by the Fast Minimum
Covariance Determinant (FMCD) method in the rank
regression method to get the Robust Rank Regression of
dependent Y (RRRY) estimate Weibull distribution
parameters through the following.

« Let x = Log(T), where T represents the failure time, is
ranked in ascending order, and x is (n X 1) vector.

+ Compute the cumulative density function F(x;) from
the median ranks (MR) in equation (7).

« y = Log (—Log(l - F(xi))) and y is (n x 1) vector.

+ D represents (n x 2) matrix for x and y.

« The robust mean vector and covariance matrix (MR and
SR, respectively) are calculated by the FMCD method
(from paragraph 2.1):

SxR

SyxR

SxyR
SyR

MR = [RR ¥R],and SR =

+ The discussion centered around the least squares
parameter estimation method applied to the estimation
of Weibull distribution parameters, leading to the
formulation of the following linear equation:

y = aR + bRx

(10)

Where:
SxyR
+/SxR X SyR

PR =

And:
4R =jR - bRxXR (11)

« Finally, the proposed estimation for the shape and scale
parameters of the Weibull distribution is:
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D. Mean Squares Error
The efficacy of the estimated parameters may be assessed
using the mean squared error (MSE), which yields the
minimal value for the estimated parameters § with optimal
efficiency, calculable by the following formula [24]

m (3._g)2
MSE = Z=limf) (14)
m

where 6 represents real parameters (proposed using
simulation) and 8 = [f 1], and m is the number of samples.

E. Application Aspect

To prove the efficiency of the proposed method (RRRY) in
estimating the shape and scale parameters of the Weibull
distribution and to compare it with some classical methods
(MLE and RRY), simulations were used in addition to real
data, as follows:

F. Simulation Study

Data having a Weibull distribution with the shape and scale
parameters (for several different values) and for several



sample sizes (50, 100, 200, 300, 400, and 500) were generated cumulative function of the median ranks at any sample size
using a program designed for this purpose in the MATLAB based on the beta and F distribution approach (Appendix).
language, in addition, creating a program that calculates the Also, outliers have been added to the generated data.
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Fig. 1 Mahalanobis distance for the first simulation experiment
The initial simulation experiment utilizing Mahalanobis simulation experiments were repeated (1000) times, the
distance values is presented in Figure 1 for the FMCD parameters of the Weibull distribution were estimated, and the
method, revealing a total of 15 outliers among the 50 MSE average (for MSE(Beta) and MSE(Eta)) and Error Mean
generated data points. To compare the proposed method were calculated. The results were summarized in Tables 1-4:
(RRRY) and classical methods (MLE and RRY), the
TABLE1
MSE AVERAGE WHEN BETA =2 & ETA =20
Sample - MLE RRY RRRY
Size Criterion
MSE Parameters MSE Parameters MSE Parameters
MSE(Beta) 1.1937 3.0926 0.6833 2.8266 0.1428 2.3779
50 MSE(Eta) 138.6521 31.7751 123.9135 31.1316 8.7389 22.9562
Error Mean 69.9229 62.2984 4.4408
MSE(Beta) 0.9520 2.9757 0.3373 2.5808 0.0726 2.2694
100 MSE(Eta) 35.9755 25.9980 28.5627 25.3444 2.5572 21.5991
Error Mean 18.4638 14.4500 1.3149
MSE(Beta) 0.7108 2.8431 0.1355 2.3681 0.0310 2.1761
200 MSE(Eta) 10.1083 23.1794 7.2261 22.6881 0.9234 20.9609
Error Mean 5.4096 3.6808 0.4772
MSE(Beta) 0.5857 2.7653 0.0747 2.2733 0.0217 2.1473
300 MSE(Eta) 47816 22.1867 3.2973 21.8158 0.5456 20.7386
Error Mean 2.6837 1.6860 0.2836
MSE(Beta) 0.5023 2.7087 0.0482 2.2195 0.0148 2.1217
400 MSE(Eta) 2.7358 21.6540 1.8789 21.3707 0.3984 20.6312
Error Mean 1.6191 0.9635 0.2066
MSE(Beta) 0.4394 2.6629 0.0339 2.1841 0.0127 2.1127
500 MSE(Eta) 1.7962 21.3402 1.2483 21.1173 0.3029 20.5504
Error Mean 1.1178 0.6411 0.1578
TABLEII
MSE AVERAGE WHEN BETA =5 & ETA =20
Sample Size Criterion MLE RRY RRRY
MSE Parameters MSE Parameters MSE Parameters
MSE(Beta) 16.1022 9.0128 14.5530 8.8148 0.8855 5.9410
50 MSE(Eta) 216.0218 34.6977 265.9051 36.3066 1.2746 21.1290
Error Mean 116.0620 140.2290 1.0801
MSE(Beta) 15.0043 8.8735 11.6083 8.4071 0.4561 5.6754
100 MSE(Eta) 67.4139 28.2106 75.1310 28.6678 0.3925 20.6265
Error Mean 41.2091 43.3696 0.4243
MSE(Beta) 13.7319 8.7057 7.9472 7.8191 0.1941 5.4406
200 MSE(Eta) 23.3910 24.8364 21.1394 24.5978 0.1442 20.3797
Error Mean 18.5615 14.5433 0.1692
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Sample Size Criterion MLE RRY RRRY
MSE Parameters MSE Parameters MSE Parameters
MSE(Beta) 12.9651 8.6007 5.8134 7.4111 0.1364 5.3693
300 MSE(Eta) 12.8897 23.5902 9.9037 23.1470 0.0856 20.2926
Error Mean 12.9274 7.8586 0.1110
MSE(Beta) 12.3987 8.5212 4.4329 7.1054 0.0935 5.3058
400 MSE(Eta) 8.3988 22.8981 5.6917 22.3857 0.0627 20.2504
Error Mean 10.3987 5.0623 0.0781
MSE(Beta) 11.9515 8.4571 3.4865 6.8672 0.0799 5.2827
500 MSE(Eta) 6.0489 22.4595 3.7043 21.9247 0.0481 20.2193
Error Mean 9.0002 3.5954 0.0640
TABLE III
MSE AVERAGE WHEN BETA =2 & ETA =30
Sample - MLE RRY RRRY
. Criterion
Size MSE Parameters MSE Parameters MSE Parameters
MSE(Beta) 1.1937 3.0926 0.6833 2.8266 0.1428 2.3779
50 MSE(Eta) 311.9672 47.6626 278.8053 36.6975 9.6624 33.1084
Error Mean 156.5805 139.7443 4.9026
MSE(Beta) 0.9520 2.9757 0.3373 2.5808 0.0726 2.2694
100 MSE(Eta) 80.9450 38.9969 64.2662 38.0166 5.7538 32.3987
Error Mean 40.9485 32.3017 2.9132
MSE(Beta) 0.7108 2.8431 0.1355 2.3681 0.0310 2.1761
200 MSE(Eta) 22.7436 34.7690 16.2588 34.0322 2.0777 31.4414
Error Mean 11.7272 8.1972 1.0544
MSE(Beta) 0.5857 2.7653 0.0747 2.2733 0.0217 2.1473
300 MSE(Eta) 10.7586 33.2800 7.4188 32.7237 1.2275 31.1079
Error Mean 5.6722 3.7468 0.6246
MSE(Beta) 0.5023 2.7087 0.0482 2.2195 0.0148 2.1217
400 MSE(Eta) 6.1555 32.4810 4.2275 32.0561 0.8965 30.9468
Error Mean 3.3289 2.1378 0.4556
MSE(Beta) 0.4394 2.6629 0.0339 2.1841 0.0127 2.1127
500 MSE(Eta) 4.0414 32.0103 2.8086 31.6759 0.6815 30.8255
Error Mean 2.2404 1.4213 0.3471
TABLE IV
MSE AVERAGE WHEN BETA =5 & ETA =30
Sample - MLE RRY RRRY
. Criterion
Size MSE Parameters MSE Parameters MSE Parameters
MSE(Beta) 16.1022 9.0128 14.5530 8.8148 0.8855 5.9410
50 MSE(Eta) 486.0491 52.0465 598.2864 54.4599 2.8679 31.6935
Error Mean 251.0756 306.4197 1.8767
MSE(Beta) 15.0043 8.8735 11.6083 8.4071 0.4561 5.6754
100 MSE(Eta) 151.6813 42.3159 169.0447 43.0017 0.8832 30.9398
Error Mean 83.3428 90.3265 0.6696
MSE(Beta) 13.7319 8.7057 7.9472 7.8191 0.1941 5.4406
200 MSE(Eta) 52.6298 37.2546 47.5637 36.8966 0.3244 30.5696
Error Mean 33.1809 27.7555 0.2593
MSE(Beta) 12.9651 8.6007 5.8134 7.4111 0.1364 5.3693
300 MSE(Eta) 29.0017 35.3853 22.2834 34.7205 0.1926 30.4389
Error Mean 20.9834 14.0484 0.1645
MSE(Beta) 12.3987 8.5212 4.4329 7.1054 0.0935 5.3058
400 MSE(Eta) 18.8972 34.3471 12.8062 33.5786 0.1411 30.3756
Error Mean 15.6479 8.6196 0.1173
MSE(Beta) 11.9515 8.4571 3.4865 6.8672 0.0799 5.2827
500 MSE(Eta) 13.6100 33.6892 8.3346 32.8870 0.1081 30.3288
Error Mean 12.7807 5.9105 0.0940

III. RESULTS AND DISCUSSION

The results of Tables 1-4 show the following:

+ The proposed (FMCD) method (RRRY) outperformed

the classical methods (MLE and RRY), depending on
MSE and Error Mean for all simulation cases.
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+ The accuracy of the shape parameter estimates was
better than the scale parameter estimates for the three
methods and all simulation cases.

« The accuracy of estimating Weibull distribution
parameters increases when the sample size increases.

« The accuracy of estimating the Weibull distribution
shape parameter decreases as its assumed value
increases for all simulation cases.



« The accuracy of the scale parameter estimation of the
Weibull distribution decreases as its assumed value
increases for all simulation cases.

+ The estimate of the shape parameter remains unaffected
by an increase in the scale parameter, whereas the
estimate of the scale parameter is influenced by an
increase in the shape parameter.

« The Error Mean indicates the superiority of the
proposed method (RRRY) over the classical methods

(RRY and MLE), while the classical method (RRY) is
superior to the classical method (MLE).

Figure 2 shows the error means from 100 repeated
experiments for the three methods. The green line represents
the proposed method (RRRY), and the red line represents the
classical method (RRY). The blue line represents the classical
method (MLE), which shows the efficiency of the proposed
method compared to classical methods; the classical method
(RRY) outperformed the classical method (MLE).
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Fig. 2 Error Mean for the three methods

A. Real data

The real data set examined the survival times, measured in
days, of guinea pigs infected with virulent tubercle bacilli, as
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summarized by Bjerkedal. The information can be found in
the Appendix. The Mahalanobis distance values are presented
in Figure 3 for the FMCD method, revealing that 30 outliers
were identified from a total of 74 generated data points.
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Fig. 3 Mahalanobis distance for the real data

Following the estimation of the shape and scale parameters
of the Weibull distribution using the three methods, these
parameters are applied to estimate survival times (expected
values). Subsequently, a goodness-of-fit test, specifically the
Chi-Square test, is employed to evaluate the efficiency of the
estimated models. This evaluation measures the model's
overall adequacy by contrasting the observed data against the
predicted values generated by the model. The p-value derived
from this test quantifies the statistical significance of the
discrepancies between the observed and predicted values. By
conducting statistical tests, we can thoroughly assess the
validity of the proposed model. The model demonstrating the
optimal fit is identified by the lowest Chi-Square values and
non-significant p-values derived from the test statistic,
thereby rendering it the most appropriate choice for the
specified data set. Table 5 summarizes the estimation and
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testing results for the three methods, and shows that the
proposed method (RRRY) was better than classical methods
(RRY and MLE) because the value of the test statistic was
equal to (10.627), which is less than the critical value (12.592)
under significance level (0.05) and the degrees of freedom (6),
(also, it less than test statistics 23.978 and 13.969 for classical
models), and this is confirmed by the p-value (0.101), which
was not significant, indicating the efficiency of the proposed
model. While the classical models (RRY and MLE) were
inefficient, because the value of the test statistic was equal to
(23.978 and 13.969) respectively, which is more than the
critical value (11.070) under significance level (0.05), and the
degrees of freedom (5), and this is confirmed by the p-value

(0.000 and 0.016) respectively, which was significant.



TABLE V
RESULTS OF ANALYSIS FOR THE REAL DATA

Chi-Square Critical Degrees of
Meth h: rameter (bet: ! rameter (et: e -val
ethod Shape parameter (beta) Scale parameter (eta) Statistic p-value Value freedom
MLE 1.3222 2.2383 23.978 0.000 11.070 5
RRY 1.6635 2.2141 13.969 0.016 11.070 5
RRRY 1.7123 1.9129 10.627 0.101 12.592 6
Figure 4 shows the probability density function of the Weibull distribution using the proposed method (RRRY).
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Fig. 4 The probability density function of the Weibull distribution
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APPENDIX
0.10 0.74 1.00 1.08 1.16 1.30 1.53 1.71 1.97 2.23 2.54 3.47 10.53
0.33 0.77 1.02 1.08 1.20 1.34 1.59 1.72 2.02 2.31 2.54 3.61 12.80
0.44 0.92 1.05 1.09 1.21 1.36 1.60 1.76 2.13 2.40 2.78 4.02
0.56 0.93 1.07 1.12 1.22 1.39 1.63 1.83 2.15 2.45 2.93 4.32
0.59 0.96 1.07 1.13 1.22 1.44 1.63 1.95 2.16 2.51 3.27 4.58
0.72 1.00 1.08 1.15 1.24 1.46 1.68 1.96 2.22 2.53 3.42 5.55
THE PROGRAM
cle
clear all

% rng default

n=500;beta=5;eta=30;EX=[beta eta];

for j=1:1000

T = wblrnd(eta,beta,n,1); % Simulated strengths;

noise = randperm(n,5); T(noise) = T(noise)*10; T=sort(T); x=log(T);

% Compute F(t)

for i=1:n
v1=2*%(n-i+1); v2=2*i; f(i)=finv(.5,v1,v2); F()=1/(1+((n-i+1)/1)*f());

end

y=log(-log(1-F));y=y";h=[x y]; [C M]=robustcov(h,"Method","fmcd");
SYY=C(2,2); SXX=C(1,1); SXY=C(1,2); RhoR=SXY/sqrt(SXX*SYY);
b=sqrt(SYY/SXX)*RhoR; a=M(1,2)-M(1,1)*b; betarrry=b; etarrry=exp(-(a/b)); C =cov(h);

SYY=C(2,2); SXX=C(1,1); SXY=C(1,2); Rho=SXY/sqrt(SXX*SYY);

b=sqrt(SYY/SXX)*Rho; a=mean(y)-mean(x)*b; betarry=b; etarry=exp(-(a/b));

para= wblfit(T); etamle=para(1,1); betamle=para(1,2); parametermle=[betamle etamle];
EMLE(j,:)=abs(parametermle-EX); ERRY(j,:)=abs([betarry etarry]-EX);
ERRRY(j,:)=abs([betarrry etarrry]-EX); E1(j,:)=EMLE,:).*2; E2(j,:)=ERRY(j,:)."2;
E3(j,:-)=ERRRY(j,:)."2;

end

MSEMLE=sum(E1)/1000, MSERR Y=sum(E2)/1000, MSERRRY=sum(E3)/1000
El1= mean(E1l"); E22= mean(E2'); E33= mean(E3'); MMLE=mean(MSEMLE)
MRRY=mean(MSERRY), MRRRY=mean(MSERRRY)
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