

International Journal of Advanced Science Computing and Engineering

Journal Homepage www.ijasce.org/index.php/ijasce

Building Enthusiasm Level Detection Model on Online Learning Using YOLOv11 with Hyperparameter Optimization

Hilmi Aziz^{a,*}, Siti Yulianti^a, Rianto^a

^a Informatics, Faculty of Engineering, Siliwangi University, Tawang, Tasikmalaya, Indonesia Corresponding author : *hilmiaziz4212@gmail.com

Abstract—This study aims to develop a model for detecting enthusiasm levels in online learning using the YOLOv11 algorithm, enhanced through hyperparameter optimization. Facial expressions serve as crucial indicators in determining enthusiasm, as they reflect the level of attention and interest a learner has toward the material. By increasing the number of interest level categories, the model is expected to provide a more detailed and accurate assessment of student engagement. The dataset used in this research is sourced from FER2013, which initially consists of seven emotion classes. These emotions are reorganized and classified into five enthusiasm levels to better represent different levels of interest in learning. Each level contains 1,000 images, resulting in a dataset of 5,000 images. This dataset was refined from previous studies to enhance its relevance and improve detection performance, making it more suitable for real-world applications. To achieve optimal performance, key hyperparameters, including the number of epochs, batch size, and image size, were fine-tuned. Before optimization, the model demonstrated an average precision (mAP 50-95) of 95.2% with an inference time of 1.7 milliseconds. After hyperparameter tuning, the model's performance improved significantly, reaching an average precision (mAP 50-95) of 97%. However, this enhancement came with a slight increase in inference time to 3.1 milliseconds. The results highlight that fine-tuning model parameters can enhance detection accuracy while maintaining efficient processing speed, making it highly applicable in educational settings for assessing learner engagement.

Keywords—Detection; enthusiasm; hyperparameter optimization; YOLOv11.

Manuscript received 3 Dec. 2024; revised 9 Mar. 2025; accepted 6 Apr. 2025. Date of publication 30 Apr. 2025. International Journal of Advanced Science Computing and Engineering is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Enthusiasm is described as a positive emotional state arising from feelings of enjoyment and interest [1]. Emotional expressions are direct expressions of internal states, implying that they are involuntary, uncontrollable, and essentially honest. [2]. Knowledge of the level of enthusiasm/interest can be obtained from emotions that function as automatic human responses that appear on the face [3]. Enthusiasm in online learning can be seen in the learner's interest on his/her face as he/she faces the front or camera while listening to the material presented on the screen.

Online learning makes quite a lot of students experience learning difficulties, especially that students do not feel the presence of social interaction, but students still have to try to hold their attention to the teacher [4]. The solution is for teachers to be able to know the level of interest of students during learning in order to carry out effective and enjoyable learning.

Nowadays, deep learning has shown its ability to recognize and learn complex patterns in detecting various objects, both living and non-living. Deep Learning is a subset of machine learning that involves algorithms that use a deep, hierarchically structured set of non-linear transformation functions to model high-level abstractions of data [5]. There are many deep learning algorithms that have been used in the expression detection process, among which the convolutional neural network (CNN) algorithm is quite popular. CNN algorithms have proven successful in detecting emotions from humas's expressions with the highest validation accuracy up to 98.65% [6]. Another deep learning algorithm that is widely used in the detection of various objects is YOLO. YOLO algorithm has proven to be very good in detecting various types of objects such as human activities with very quickly [7]. In addition, the newest version of YOLO, YOLOv11 is also used in early Diagnoses of Acute Lymphoblastic Leukemia [8]. YOLOv11 also achieve the fastest inference time on fruits detection with only 2.4 ms, although best performance was achieved by

YOLOv9 gelan-base and YOLOv9 gelan-e with a score of 93.5% in the same research [9].

There is one of the efforts to obtain optimal performance in the Convolutional Neural Network (CNN) like YOLO model by hyperparameter optimization involving epoch adjustment, batch size, and learning rate as has been done in the study 3D printer error detection research using the YOLOv8 algorithm to find out the best configuration for the model so as to find improvements and different results from each configuration [10]. Based on what was found in previous related research, there is an opportunity to create a faster enthusiasm level detection model using YOLOv11 with hyperparameter optimization on the model to get more accurate performance results. This research is expected to produce an enthusiasm detection model to recognize the level of enthusiasm in online learning so that teachers will be helped to monitor and recognize their students' interests more quickly and easily respond and adjust students' needs.

II. MATERIALS AND METHOD

A. Related Work

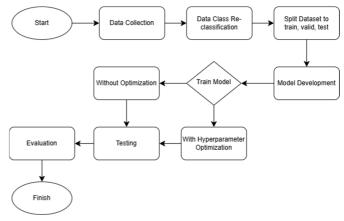
Several studies have built human expression detection models using CNN and YOLO algorithms. Research [11] using the FER2013 dataset in human emotion detection with the CNN algorithm achieved a fairly good accuracy rate at 73,8%. Meanwhile, with the same dataset, FER2013, the research [12] grouped the dataset into 2 enthusiasm categories in building an enthusiasm level detection model with YOLOv8 achieving very good accuracy at 95.3% with an inference time of 62 ms. This research shows the excellent performance of the YOLOv8 algorithm in human expression detection coupled with real-time detection features makes it a better detection model.

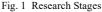
Related research was also conducted in [13] the classification of interest levels of kindergarten children using CNN with 3 classes of interest levels from a dataset of 243 images. The model achieved its highest accuracy of 81.6%. The accuracy of this CNN model is lower when compared to the YOLOv8 model. The latest YOLO algorithm was also used in a study on [8] early diagnosis of acute lymphoblastic leukemia by comparing the performance of YOLOv8 and YOLOv11 with a dataset of 3,256 images. The results show that YOLOv11s is superior with an accuracy of 98.8%.

YOLOv11 brings improvements to the architecture and detection capabilities. It combines convolutional backbone and Feature Pyramid Network (FPN) to support better multiscale detection. YOLOv11 also proved to be faster than the previous generation in a study comparing the performance of YOLOv8, YOLOv9, YOLOv10, and YOLOv11 in fruit detection [9]. Although the best performance was achieved by YOLOv9 gelan-base and YOLOv9 gelan-e with a score of 93.5%, the fastest inference time was achieved by YOLOv11 n with only 2.4 ms.

B. Methodology

This research methodology is designed to build an enthusiasm level detection model using the Yolov11 algorithm with hyperparameter optimization. the steps of this research are outlined in Figure 1.





1) Step 1: Data Collection

The dataset used in this research is FER 2013 which can be obtained from the Kaggle site. This dataset contains 35,887 digital image data with 7 data classes labeled with human facial expressions, namely Anger, Disgust, Fear, Happy, Sad, Surprise, and Neutral.

2) Step 2: Data Class Re-classification

The dataset containing 7 emotion classes was reclassificated into 5 enthusiasm level classes named "Highly Interested", "Interested", "Quite Interested", "Less Interested", and "Not Interested" with each new dataset class containing 1000 image data [9]. Data class re-classification was carried out with the help of lecturer and fellow students and is in line with related research that classifies the level of interest of kindergarten children to avoid subjective preferences of a person. The result from re-classification of dataset classes is shown in Figure 2.

Fig. 1 Re-classification of Dataset Class

Those new classes are described in table 1 along with sample data of each class.

TABLE I The dataset: new classes of entusiasm (interest level)					
Class Name	Samples	Description			
Highly Interested	1	Showed a fond expression with a gaze facing the screen			
Interested		Showed a neutral expression is with the gaze facing the screen			
Quite Interested	() ()	Showed a disliked expression but gaze still facing the screen			

Class Name	Samples	Description	
Less Interested		Showed an expression of dislike with the face facing forward but the eyes looking the other way	
Not Interested		Showed a displeased expression with a face that is not even facing the screen	

After dataset was re-classificated, the new dataset labeled with a class order that is adjusted to the order of class names in table 1. The labeling proses is done by creating a txt extension file for each image in the dataset which contains class information and bounding boxes [14].

3) Step 3: Split Dataset

The dataset totaling 5000 image data is divided into train data, valid data, and test data with a ratio of 70:15:15 [15]. The training data is used to learn the pattern of the object to be detected. Validation data is used during model training to evaluate the performance of the model on unseen data during each training epoch. This test data provides an objective assessment of the model's ability to detect objects on new and previously unassessed data.

4) Step 4: Model Development

The model that will be used in this research is YOLOv11. The YOLOv11 architecture consists of three main components: backbone, neck, and head. The backbone, which typically consists of a convolutional neural network, serves as the main feature extractor, transforming raw image data into a multi-scale feature map. The neck then processes this feature map with layers designed to combine and enhance feature representations across multiple scales. Finally, the head generates the final prediction for object location and classification based on the processed feature map. Based on foundation, YOLO11 introduces architectural this enhancements and parameter optimizations, improving detection performance and accuracy over previous versions [16]. The architecture of this enthusiasm detection model with YOLOv11 can be seen in Figure 3.

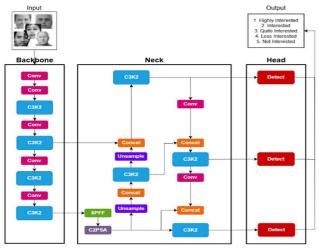


Fig. 2 The Architecture of Detection Model with YOLOv11

The variation of YOLOv11 that will be used in this research is the nano variation. This variation mode was chosen because it is a model that has the fastest inference time as evidenced in the research reaching a time of 2.4 ms.

5) Step 5: Train Model

The model to be trained in this research is divided into 2 parts:

a) Model Before Hyperparameter Optimization

Model a) uses the same hyperparameter configuration settings as the YOLOv11 hyperparameter configuration in the research [9] shown in table 2.

TABLE II Hyperparameter configuration	
Hyperparameter	Value
Initial Learning Rate (lr0)	0.01
Final Learning Rate (lrf)	0.01
Momentum	0.937
Weight Decay	0.0005
Warmup Epochs	3.0
Box Loss Gain (box)	7.5
Class Loss Gain (cls)	0.5
Definition Loss Gain (dfl)	1.5

b) Model With Hyperparameter Optimization

Model b) is the best performing model of several models trained with different hyperparameter configurations following to what was done in research [10]. The hyperparameter configuration to be used shown in the table 3:

 TABLE III

 Hyperparameter configuration for optimization)

Hyper- parameter	Explanation	Influence	Value
Image size	The dataset image size which determines how much information the model can obtain.	A larger the image size, the more information the model can obtain, but it also increases computational cost.	16, 32
Batch Size	The number of samples processed before the model updates its weights.	A larger batch size makes the training process more stable and efficient but requires more memory.	48x48, 360x36 0
Epoch	The number of times the entire dataset is passed through the training algorithm.	A higher number of epochs can generally improve model accuracy, but too many epochs may lead to overfitting.	50, 100, 200

6) Step 6: Testing

Model testing is done using 750 test data, in contrast to the training process which uses valid data as test data to get an assessment of its performance when detecting images it has never seen.

7) Step 7: Evaluation

Model evaluation is an important stage after testing to check the performance and object detection capabilities of the trained model. This model evaluation can be done using Mean Average Precision (mAP), a metric that measures the accuracy of the model in detecting and recognizing objects at various levels of precision. Calculating mAP can be calculated as described in equations (1), (2), (3), and (4) [17].

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive} \tag{1}$$

Precision is the ratio of the value of true positive predictions to the total results with positive predictions.

$$Recall = \frac{True Positive}{True Positive + False Negative}$$
(2)

Recall is the ratio of true positive predicted values to all true positive data that are true positive.

Average Precision (AP) = $\sum_{n} (R_n - R_{n-1} \times P_n)$ (3) AP is a measure that describes the Precision-Recall curve (precision plotted against recall) in a single number, or the area below it.

Mean Average Precision (mAP) =
$$\frac{1}{n} \sum_{i=1}^{n} AP_i$$
 (4)

mAP is the average of APs for all classes in the dataset.

Model evaluation is also done with the Confusion Matrix table, which evaluates the performance of classification models in machine learning by comparing the model's predictions with the actual data to help understand where the model went wrong.

III. RESULT AND DISCUSSION

This section will explain how the detection model compares before and after hyperparameter optimization. There are 2 accuracies of this model, namely training accuracy (using valid data during the model training process) and testing accuracy (using test data during the model testing process).

The training accuracy of model a) received an average score of precision value (mAP50-95) with a score of 95.2% and an inference time of 1.7 ms. The Confusion Matrix of training model a) is shown in the figure 4.

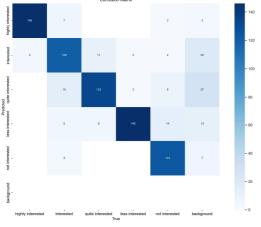


Fig. 3 Confusion Matrix of Training Accuracy for Model a)

Meanwhile the testing accuracy of model a) received an average precision value (mAP50-95) with a score of 94.7% with an inference time of 3.2 ms. The performance of testing model a) is slightly lower than the performance in the training process with a difference of 0.5%. The Confusion Matrix of model a) for testing results is shown in Figure 5.

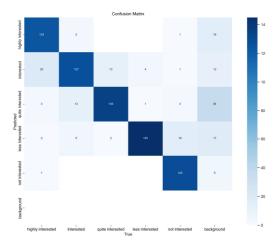


Fig. 4 Confusion Matrix of Testing Accuracy for Model a)

Furthermore, the training accuracy and testing accuracy for model b) with hyperparameter optimization are shown in Table 4. Then the confusion matrix of model b) with the best performance for both training and testing accuracy is shown in Figure 6 and 7.

TABLE IV TRAINING ACCURACY AND TESTING ACCURACY OF MODEL B)

Нуре	rparam	eter	Training	Accuracy	Testing	Accuracy
Image size	Batch Size	Epoch	mAP50- 95	Inference Time	mAP50- 95	Inference Time
48x48	16	50	75%	0.5 ms	73,3%	0.5 ms
		100	80,2%	0.4 ms	75,3%	0.5 ms
		200	65,3%	1 ms	63%	0.4 ms
	32	50	76,2%	0.3 ms	72,1%	0.4 ms
		100	78,6%	0.3ms	74,4%	0.3 ms
		200	81,6%	0.7 ms	80,4%	0.2 ms
360x360	16	50	92,6%	1.5 ms	91,6%	2.7 ms
		100	95,2%	1.5 ms	94,7%	2.7 ms
		200	95,7%	3.5 ms	95,7%	2.7 ms
	32	50	93,5%	1.5 ms	93,2%	2.7 ms
		100	95,6%	1.5 ms	95%	2.8 ms
		200	97%	3.1 ms	96, 7%	2.7 ms

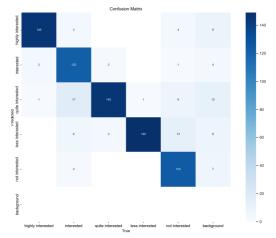
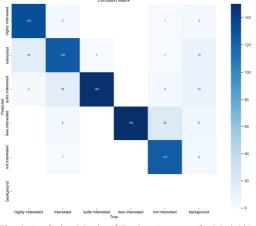
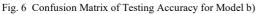


Fig. 5 Confusion Matrix of Training Accuracy for Model b)

The best performance for both training and testing accuracy was achieved when model b) used an image size of 360x360 pixels, batch size of 32, and 200 epochs with an average precision score (mAP 50-95) of 97% with an

inference time of 3.1 ms for training accuracy, and 96.7% with an inference time of 2.7 ms for testing accuracy.





The configuration of the three hyperparameters significantly affects the performance of the model. A largerimage size has a large effect on the performance of the model. The performance of the model with 360x360 pixels dataset far outperforms the model with 48x48 pixels dataset.

Batch size is also quite influential on model performance although increasing batch size from 16 to 32 only slightly improves performance with the same image size and epoch. The larger epoch also affects the performance of the model although not too much as seen in the figure 8 and 9.

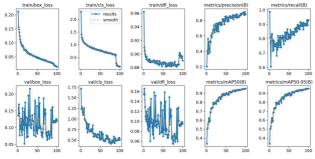


Fig. 7 Performance Graph for Model a) Before Optimization

Figure 8 shows the performance of model a) before optimization. As the epochs increase, it can be seen that the loss or model error graph is getting smaller. The average precision of the model also increases as the epoch increases.

Figure 9 shows the slight difference between the optimized model b) and model a) before optimization. The most striking difference is in the loss graph in the validation which is more stable decreasing as the epoch increases.

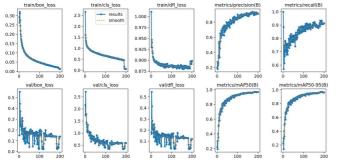


Fig. 8 Performance Graph for Model b) With Optimization

IV. CONCLUSION

The YOLOv11n detection model proved to have an excellent performance level in both accuracy and inference speed at all hyperparameter settings both before and after optimization. Before optimization, the model achieved an average precision (mAP50-95) of 95.2% and inference time of 1.7 ms. After optimization with a configuration of 360 pixels batch size of 32 and 200 epochs, the model performance increased to 97% average precision and inference time at 3.1 ms.

The weakness of the developed model lies in the automatic annotation process, where the entire image in the dataset is enclosed within a bounding box. As a result, the model may learns excessive patterns from the dataset. Further research is expected to perform manual annotation by creating bounding boxes only around the facial area in the dataset.

References

- I. Burić and A. Moè, "What makes teachers enthusiastic: The interplay of positive affect, self-efficacy and job satisfaction," *Teach. Teach. Educ.*, vol. 89, p. 103008, Mar. 2020, doi: 10.1016/j.tate.2019.103008.
- [2] M. E. Kret et al., "Emotional expressions in human and non-human great apes," *Neurosci. Biobehav. Rev.*, vol. 115, pp. 378-395, Aug. 2020, doi: 10.1016/j.neubiorev.2020.01.027.
- [3] F. F. Rahmawati, D. Setiawan, and M. Roysa, "Penyebab kesulitan belajar siswa pada pembelajaran daring," *J. Lesson Learn. Stud.*, vol. 4, no. 3, pp. 302-308, Dec. 2021, doi: 10.23887/jlls.v4i3.32506.
- [4] C. Conrad et al., "How student perceptions about online learning difficulty influenced their satisfaction during Canada's Covid-19 response," *Br. J. Educ. Technol.*, vol. 53, no. 3, pp. 534-557, Feb. 2022, doi: 10.1111/bjet.13206.
- [5] C. Janiesch, P. Zschech, and K. Heinrich, "Machine learning and deep learning," *Electron. Mark.*, vol. 31, no. 3, pp. 685-695, Apr. 2021, doi:10.1007/s12525-021-00475-2.
- [6] A. Jaiswal, A. K. Raju, and S. Deb, "Facial emotion detection using deep learning," in *Proc. Int. Conf. Emerg. Technol. (INCET)*, Jun. 2020, doi: 10.1109/INCET49848.2020.9154121.
- [7] N. P. Motwani and S. S, "Human activities detection using deep learning technique - YOLOv8," *ITM Web Conf.*, vol. 56, p. 03003, 2023, doi: 10.1051/itmconf/20235603003.
- [8] A. Awad, M. Hegazy, and S. A. Aly, "Early diagnoses of acute lymphoblastic leukemia using YOLOv8 and YOLOv11 deep learning models," arXiv, Oct. 2024.
- [9] R. Sapkota et al., "Comprehensive performance evaluation of YOLO11, YOLOv10, YOLOv9 and YOLOv8 on detecting and counting fruitlet in complex orchard environments," *arXiv*, Jul. 2024.
- [10] N. B. A. Karna et al., "Toward accurate fused deposition modeling 3D printer fault detection using improved YOLOv8 with hyperparameter optimization," *IEEE Access*, vol. 11, pp. 74251-74262, 2023, doi:10.1109/access.2023.3293056.
- [11] Y. Khaireddin and Z. Chen, "Facial emotion recognition: State of the art performance on FER2013," arXiv, May 2021.
- [12] K. Salma and S. Hidayat, "Deteksi antusiasme siswa dengan algoritma Yolov8 pada proses pembelajaran daring," *J. Indones.: Manaj. Inf. Komun.*, vol. 5, no. 2, pp. 1611-1618, May 2024, doi:10.35870/jimik.v5i2.716.
- [13] A. R. Kusumastuti, Y. Kristian, and E. Setyati, "Klasifikasi ketertarikan anak PAUD melalui ekspresi wajah menggunakan metode CNN," *J. Teknol. Inf. Terapan*, vol. 7, no. 2, pp. 92-96, Dec. 2020, doi:10.25047/jtit.v7i2.176.
- [14] X. Tao et al., "Pavement crack detection and identification based on improved YOLOv8," *Int. J. Cogn. Inform. Nat. Intell.*, vol. 18, no. 1, pp. 1-20, Sep. 2024, doi: 10.4018/IJCINI.356363.
- [15] A. Serikbay et al., "Ensemble pretrained convolutional neural networks for the classification of insulator surface conditions," *Energies*, vol. 17, no. 22, p. 5595, Nov. 2024, doi:10.3390/en17225595.
- [16] R. Khanam and M. Hussain, "YOLOv11: An overview of the key architectural enhancements," arXiv, Oct. 2024.
- [17] D. Krstinić et al., "Multi-label classifier performance evaluation with confusion matrix," *Comput. Sci. Inf. Technol.*, Jun. 2020, doi:10.5121/csit.2020.100801.