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Abstract—The increasing unpredictability of environmental conditions, such as temperature fluctuations, humidity variations, seasonal 

shifts, and changing water availability, presents a significant challenge for sustainable food production. The increasing unpredictability 

of environmental conditions, including temperature fluctuations, humidity variations, seasonal shifts, and changing water availability, 

poses a significant challenge for sustainable food production. Although they are suitable for simple decision-making, conventional Type-

1 Fuzzy Logic-based irrigation systems struggle to manage sensor noise, environmental uncertainty, and changing field conditions, 

resulting in sometimes ineffective water use and uneven irrigation management. This work presents a solar-powered mist irrigation 

system that integrates Interval Type-2 Fuzzy Logic (IT2FLS) and Internet of Things (IoT) technologies to improve precision irrigation 

management and address these issues. The proposed system employs IoT-based real-time environmental monitoring via Blynk and 

ThingSpeak to enable dynamic irrigation adjustments in response to temperature and soil moisture fluctuations. Type-2 Fuzzy Logic 

offers more reliable relay activation choices and greater robustness to sensor noise by incorporating Upper and Lower Membership 

Functions (UMF & LMF) and a Footprint of Uncertainty (FoU) than conventional Type-1 FIS. Experimental data demonstrate that 

the Type-2 Fuzzy model significantly reduces erroneous irrigation activations, maximizes water distribution, and increases system 

flexibility in response to environmental changes. Using solar power further improves energy efficiency, thereby reducing dependence 

on grid electricity and supporting environmentally friendly irrigation practices. This work demonstrates that, for contemporary 

agriculture, Type-2 Fuzzy Logic-based smart irrigation offers a scalable, flexible, and cost-effective alternative. This study shows how 

integrating renewable energy, advanced Type-2 fuzzy control, and IoT can create resource-efficient, adaptive irrigation systems 

supporting sustainable farming amid environmental challenges.  
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I. INTRODUCTION

The agricultural sector faces increasing challenges in 

maintaining a stable and sustainable food supply due to 

unpredictable environmental fluctuations [1]. Key factors 

such as temperature variations, humidity changes, irregular 

seasonal patterns, water availability, and pest outbreaks 

significantly impact crop yield and agricultural productivity 

[2], [3]. In Indonesia, where population growth continues to 

rise, the demand for reliable and efficient food production has 

become increasingly critical. Crop failures due to adverse 

environmental conditions exacerbate the imbalance between 

food supply and demand, posing a serious threat to food 

security [4], [5]. To address these challenges, innovative and 

adaptive agricultural solutions are required. Research 

identifies water availability, temperature, and soil moisture as 

the most influential factors in determining crop productivity 

[6], [7]. However, traditional irrigation systems often struggle 

to optimize these variables, resulting in either overirrigation 

or underirrigation. The integration of renewable energy 

sources, such as solar power, along with advanced 

environmental monitoring using the Internet of Things (IoT), 

presents a promising approach to improving irrigation 

efficiency and sustainability [8], [9]. 

Despite the benefits of intelligent irrigation, conventional 

Type-1 Fuzzy Logic Systems (T1FLS) exhibit limitations in 

53

IJASCE : Int. J. of Adv. Sci. Comp. and Eng, 7(2) - August 2025 53-59



handling sensor noise, environmental uncertainty, and 

imprecise data. As a result, decision-making based on Type-1 

FIS is prone to fluctuations, affecting irrigation reliability and 

resource efficiency [10]. Research has shown that Type-1 

Fuzzy Logic struggles with handling uncertainty in real-world 

applications, particularly in situations involving dynamic 

environmental conditions and noisy sensor readings [11]. 

These limitations reduce the effectiveness of conventional 

fuzzy controllers, making them less suitable for precision 

irrigation in smart agriculture [12]. To overcome these 

limitations, this study introduces a Type-2 Fuzzy Logic 

System (T2FLS) that incorporates an additional uncertainty 

layer via secondary membership functions. Unlike Type-1 

FIS, Type-2 Fuzzy Logic Systems introduce Upper and 

Lower Membership Functions (UMF & LMF) and a Footprint 

of Uncertainty (FoU) to handle variations in sensor data [13]. 

These enhancements allow for more accurate, adaptive, and 

stable decision-making, making Type-2 Fuzzy Logic a 

powerful tool for intelligent irrigation [14]. 

Efficient water management is a key concern in agriculture, 

especially in regions affected by climate variability and 

prolonged dry spells. Traditional irrigation methods often lack 

adaptability to dynamic environmental conditions, resulting 

in inefficient water usage [15]. Prior studies indicate that 

regulating soil moisture, maintaining optimal temperatures, 

and controlling irrigation timing are essential for maximizing 

crop yield and ensuring sustainable farming [16]. This 

research proposes an adaptive irrigation system that 

dynamically adjusts water delivery based on real-time 

environmental inputs, ensuring efficient resource use while 

preventing over- or under-irrigation. In addition to water 

conservation, energy efficiency in agriculture presents 

another major challenge. Conventional irrigation systems 

typically depend on electricity grids or fuel-powered pumps, 

leading to high operational costs and increased carbon 

emissions [17], [18]. The integration of solar-powered 

irrigation systems provides a sustainable alternative, 

significantly reducing reliance on fossil fuels while lowering 

energy costs [9]. By leveraging solar energy to power 

irrigation components and environmental sensors, the system 

aligns with global efforts toward eco-friendly and cost-

effective agricultural automation. 

This study proposes a solar-powered smart irrigation 

system, enhanced with Type-2 Fuzzy Logic and IoT-based 

environmental monitoring. Unlike traditional systems, this 

model dynamically adjusts irrigation duration based on 

temperature and soil moisture variations, while handling 

sensor uncertainties more effectively through Type-2 Fuzzy 

Logic [19], [20]. The integration of IoT technology further 

enhances the system’s real-time monitoring capabilities, 

allowing for remote access and automated control. By 

continuously adapting to environmental changes, the system 

optimizes water usage, prevents unnecessary irrigation, and 

enhances overall sustainability. Ultimately, this research aims 

to design, implement, and evaluate a prototype of a solar-

powered mist irrigation system in a small-scale greenhouse. 

By integrating Type-2 Fuzzy Logic, IoT-based monitoring, 

and renewable energy, the system offers an efficient, adaptive, 

and sustainable solution for modern agriculture, ensuring 

higher irrigation precision, improved water conservation, and 

enhanced agricultural resilience in response to changing 

environmental conditions [21], [22].  

II. MATERIALS AND METHODS 

Recent research by Pascaris et al. [23] highlights the 

potential for solar energy to achieve energy self-sufficiency in 

agriculture. According to Benghanem et al. [1], solar-powered 

greenhouses have demonstrated great potential in reducing 

energy costs while maintaining optimal growing conditions 

for plants. Similarly, Maraveas et al. [24] emphasized that 

integrating renewable energy sources into agricultural 

applications can enhance sustainability and improve irrigation 

efficiency. Therefore, renewable energy can be effectively 

utilized in irrigation systems, providing a reliable and eco-

friendly power supply for water distribution. 

Other studies have demonstrated the effectiveness of IoT 

in smart farming. For instance, Maulana et al. [25] developed 

a smart greenhouse system that employs IoT to monitor and 

control environmental variables, including temperature and 

humidity. Their findings indicate that IoT-based systems can 

significantly enhance the precision of agricultural operations, 

thereby improving crop yields and resource conservation. 

Additionally, effective IoT monitoring and control can be set 

by fuzzy logic to ensure a precise control system that can 

utilize resources more efficiently [26], [27], [28], [29], [30]. 

This study designs and implements a solar-powered smart 

irrigation system that uses Interval Type-2 Fuzzy Logic to 

control relay operation based on environmental conditions, 

specifically temperature and soil moisture. The system, as 

illustrated in Figure 1, is built on an ESP32 microcontroller 

and uses sensors, actuators, and IoT communication to enable 

real-time monitoring and automation. 

 
Fig. 1 System Block Diagram for Type-2 Fuzzy Logic-Based Solar PV-

Powered Mist Irrigation System 

 

The mechanical design of the device, shown in Figure 2, 

ensures that all components are securely housed and protected 

from environmental exposure, facilitating reliable operation 

in agricultural settings. The enclosure is designed to be 

waterproof and dust-resistant, shielding electronic 
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components such as the ESP32, relay, and sensors from 

environmental elements. The mechanical layout includes a 

solar panel mount optimized for sunlight exposure, allowing 

efficient energy harvesting to sustain the system. 

 
Fig. 2  Solar PV-Powered Mist Irrigation System Mechanical Design 

A. Fuzzy Inference System (FIS) and Interval Type-2 Fuzzy 

Logic Implementation 

The Interval Type-2 Fuzzy Logic-based methodology 

enhances traditional fuzzy inference by incorporating 

secondary membership functions that model higher levels of 

uncertainty than those in Type-1 Fuzzy Logic. This additional 

uncertainty handling is particularly beneficial for sensor-

based systems where environmental factors introduce noise 

and variability in sensor readings. Type-2 Fuzzy Membership 

Functions are designed to incorporate an additional degree of 

uncertainty, with the Upper Membership Function (UMF) and 

Lower Membership Function (LMF) defined. These functions 

provide a Footprint of Uncertainty (FoU), making the system 

more robust to sensor noise and environmental fluctuations. 

The system processes two input variables are Temperature (T) 

[°C] and Soil Moisture (M) [%]. Each input is represented as 

an Interval Type-2 Fuzzy Set, consisting of Primary 

Membership Function (Upper & Lower Bound), which 

represents general trends in sensor data, and Secondary 

Membership Function (Footprint of Uncertainty - FoU), 

which captures measurement noise and variations. 

The mathematical representation of fuzzy sets, specifically 

the Interval Type-2 Fuzzy Set, is defined for each input 

variable � as follows: 

 �̃ � ���, �	
����, �

����� ∣ � ∈ �� (1) 

In this notation, �	
����  represents the Upper 

Membership Function, while �

����  denotes the Lower 

Membership Function. The variable � refers to the universal 

set of input values. 

For temperature �T� in  ∘C, the membership functions are 

defined as follows: 

1) Low Temperature: 

 
�low 

	
���� � max�0, min�1, �20 � ��/15���low 


���� � max�0, min�1, �18 � ��/17��  (2) 

2) Medium Temperature: 

 
�$%&	
���� � max�0, min��� � 15�/15, �35 � ��/15���$%&

���� � max�0, min��� � 17�/14, �33 � ��/14��  (3) 

3) High Temperature: 

 
�high 

	
���� � max�0, min�1, �� � 30�/15���)*+)

� ��� � max�0, min�1, �� � 32�/13�� (4) 

For soil moisture ( M ) in %, the membership functions 

follow a trapezoidal function: 

1) Dry Soil: 

 
�&-.	
��/� � max�0, min�1, �30 � /�/20���&-.

��/� � max�0, min�1, �28 � /�/22��  (5) 

2) Optimal Moisture: 

 
�opt 	
��/� � max�0, min��/ � 25�/20, �65 � /�/20���opt 

��/� � max�0, min��/ � 27�/18, �63 � /�/18��  (6) 

3) Wet Soil: 

 
�1%2	
��/� � max�0, min�1, �/ � 60�/20���1%2

��/� � max�0, min�1, �/ � 62�/18��  (7) 

For relay time (R) in milliseconds, the membership 

functions are piecewise linear, with upper and lower 

membership functions to account for uncertainties in 

activation duration. The Type-2 fuzzy membership functions 

for relay time are defined as follows: 

1) Short Relay Time ( 3short  ): 

 

�short 	
��4� �
⎩⎪⎨
⎪⎧1, 4 9 0:;<=<<<;< , 0 > 4 9 2000?<<<;:?<<<;=<<< , 2000 > 4 9 40000, 4 @ 4000

�short LMF �4� �
⎩⎪⎨
⎪⎧1, 4 9 0:;<AB<<;< , 0 > 4 9 1800CB<<;:CB<<;AB<< , 1800 > 4 9 38000, 4 @ 3800

 (8) 

2) Medium Relay Time ( 4medium  ) 

 

�medium 
	
� �4� �

⎩⎪⎨
⎪⎧0, 4 9 3000:;C<<<?<<<;C<<< , 3000 > 4 9 4000B<<<;:B<<<;D<<< , 6000 > 4 9 80000, 4 @ 8000

�medium 


� �4� �

⎩⎪⎨
⎪⎧0, 4 9 3200:;C=<<CB<<;C=<< , 3200 > 4 9 3800EB<<;:EB<<;D=<< , 6200 > 4 9 78000, 4 @ 7800

 (9) 

3) Long Relay Time ( 4long  ) 
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�long 
	
��4� � F0, 4 9 7000:;E<<<B<<<;E<<< , 7000 > 4 9 80001, 4 @ 8000

�long 


��4� � F0, 4 9 7200:;E=<<EB<<;E=<< , 7200 > 4 9 78001, 4 @ 9000

 (10) 

 

The Fuzzy Inference System (FIS) applies Mamdani 

Interval Type-2 fuzzy rules to determine the Relay Activation 

Time �R� based on temperature and soil moisture inputs. 

 

 
Fig. 3  Type-2 Fuzzy Inference System Block Diagram 

 

Fuzzy Rules: 

1 IF Temperature is Low AND Soil Moisture is Dry 

THEN Relay Time is Long. 

2 IF Temperature is Low AND Soil Moisture is Optimal 

THEN Relay Time is Medium. 

3 IF Temperature is Low AND Soil Moisture is Wet 

THEN Relay Time is Short. 

4 IF Temperature is Medium AND Soil Moisture is Dry 

THEN Relay Time is Long. 

5 IF Temperature is Medium AND Soil Moisture is 

Optimal THEN Relay Time is Medium. 

6 IF Temperature is Medium AND Soil Moisture is Wet 

THEN Relay Time is Short. 

7 IF Temperature is High AND Soil Moisture is Dry 

THEN Relay Time is Long. 

8 IF Temperature is High AND Soil Moisture is Optimal 

THEN Relay Time is Medium. 

9 IF Temperature is High AND Soil Moisture is Wet 

THEN Relay Time is Short. 

TABLE I 

FUZZY RULES 

Rule Temp (°C) Soil Moisture Relay Time 

1 Low Dry Long 

2 Low Optimal Medium 

3 Low Wet Short 

4 Moderate Dry Long 

5 Moderate Optimal Medium 

6 Moderate Wet Short 

Rule Temp (°C) Soil Moisture Relay Time 

7 High Dry Long 

8 High Optimal Medium 

9 High Wet Short 

B. Defuzzification Process 

The defuzzification process is the final stage of an Interval 

Type-2 Fuzzy Inference System (FIS), in which the fuzzy 

output is converted into a crisp relay activation time. Unlike 

Type-1 fuzzy logic, which applies a single centroid 

calculation, Type-2 fuzzy logic introduces a Footprint of 

Uncertainty (FoU), resulting in an interval-valued fuzzy set as 

the output. To obtain a single crisp output, the Centroid of 

Centroids (CoC) method is employed. 

In a Type-1 FIS, the defuzzified output 4  is determined 

using the centroid method, which is given by: 

 4 � I  K  LRelayTime �:�⋅:&:I  K  LRelayTime �:�&:  (11) 

where 4  represents the relay running time in milliseconds, �RelayTime �4� is the aggregated fuzzy membership function, 

and Ω is the universal domain of relay activation times. For 

Type-2 FIS, the output is represented by an interval O4
 , 4	P, 
where 4
 is the lower bound and 4	 is the upper bound of the 

output fuzzy set. Using the Centroid of Centroids (CoC) 

method, the crisp relay activation time 4∗ is calculated as: 

 4∗ � :RS:T
=  (12) 

where 4
  and 4	  are determined by integrating the Lower 

and Upper Membership Functions (LMF and UMF) over the 

domain. Mathematically, the Type-2 centroid bounds are 

given by: 

 

4
  � I  K  LUVW�:�⋅:&:I  K  LUVW�:�&:4	  � I  K  LXVW�:�⋅:&:I  K  LXVW�:�&:
 (13) 

where �YZ[�4� and �\Z[�4� represent the lower and upper 

membership functions, respectively, defining the uncertainty 

region of the fuzzy output. 

Since Type-2 fuzzy logic produces an interval-valued 

output, the final crisp relay time is obtained by averaging the 

two centroid bounds, ensuring more stable decision-making 

than the traditional Type-1 centroid method. This enhanced 

defuzzification process yields more precise relay activation 

times, reduces unnecessary water use, and improves noise 

tolerance, ensuring optimal irrigation despite sensor 

uncertainties. Additionally, it contributes to greater decision-

making stability by preventing excessive fluctuations in 

irrigation schedules. By applying the CoC method, the system 

achieves a more robust and adaptive irrigation control 

mechanism, making Type-2 Fuzzy Logic a highly effective 

solution for smart agriculture. 

III. RESULTS AND DISCUSSION 

The Interval Type-2 Fuzzy Inference System (FIS) 

developed for the solar-powered mist irrigation system was 

rigorously tested to evaluate its performance in dynamically 

regulating irrigation in response to real-time environmental 

conditions. The primary goal was to assess the impact of 
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Type-2 fuzzy logic in handling sensor uncertainties, 

improving irrigation efficiency, and ensuring optimal water 

conservation. 

Unlike traditional Type-1 Fuzzy Logic, Type-2 Fuzzy 

Logic incorporates an additional degree of uncertainty via 

Upper Membership Functions (UMF) and Lower 

Membership Functions (LMF), thereby providing a more 

robust decision-making process. This capability enables 

better adaptation to noisy sensor readings and fluctuating 

environmental conditions, which is critical in agricultural 

irrigation systems. 

The system was tested under various environmental 

conditions using temperature and soil moisture readings 

collected within the following ranges: �]^_]`abc`] ���: 5°f bg 45°f hgij /gikbc`] �/�: 15% bg 90% mcb_cb 4]jan �i^] �4�: 1,866 ms to 8,897 ^ijjik]rgstk �^h� 

To evaluate system adaptability, test scenarios were 

carefully designed to reflect real-world irrigation conditions, 

ensuring that the system responds appropriately to different 

environmental states. Under high temperatures and dry soil, 

the system was expected to apply prolonged irrigation 

durations to compensate for rapid soil moisture loss. Under 

moderate temperature conditions with optimal soil moisture, 

medium irrigation durations were required to maintain 

balanced hydration. Meanwhile, when soil moisture levels 

were already high, the system needed to minimize irrigation 

durations to prevent overwatering and unnecessary water 

consumption. 

The defuzzified relay times were classified into short, 

medium, and long durations, and the results were compared 

with those of the previous Type-1 Fuzzy Logic system to 

assess improvements in stability, adaptability, and water-

conservation efficiency. By dynamically adjusting irrigation 

based on real-time environmental conditions, the Type-2 

Fuzzy Inference System (T2FIS) was evaluated for its ability 

to optimize water usage, minimize unnecessary irrigation, and 

enhance long-term sustainability in smart agriculture. 

The test results obtained from the Interval Type-2 FIS are 

summarized in Table 2, which presents the relay-time outputs 

across various temperature and soil-moisture conditions. 

TABLE III 

RELAY TIME OUTPUTS FOR VARIOUS TEST USING TYPE-2 FUZZY LOGIC 

Test 
Temp 

( ∘u� 

Soil 

Moist 

(%) 

R_L 

(ms) 

R_U 

(ms) 

R* 

(ms) 

Output 

Classification 

1 15 15 9061 8733 8897 Long Time 

2 10 50 5878 5666 5772 Medium Time 

3 5 75 1866 2000 1933 Short Time 
4 30 20 9061 8733 8897 Long Time 

5 30 50 5878 5666 5772 Medium Time 
6 30 85 1866 2000 1933 Short Time 

7 45 15 9061 8733 8897 Long Time 

8 40 50 5878 5666 5772 Medium Time 
9 40 90 1866 2000 1933 Short Time 

       

 

The results reveal several key improvements in the Interval 

Type-2 Fuzzy Logic system compared to the previous Type-

1 implementation. One of the most significant advantages of 

Type-2 fuzzy logic is its improved handling of sensor noise. 

Since traditional Type-1 FIS relies on fixed membership 

functions, it often struggles with fluctuating sensor readings, 

resulting in inconsistent relay times. In contrast, the Footprint 

of Uncertainty (FoU) in Type-2 FIS accounts for sensor 

imprecision, resulting in more stable and reliable irrigation 

decisions. 

Irrigation accuracy was also significantly improved. When 

soil moisture levels were high (e.g., 75%–90%), the relay time 

was consistently reduced, ensuring minimal overwatering. 

Conversely, when soil moisture was critically low (e.g., 15%–

20%), the system allocated longer irrigation durations to 

ensure that crops received the required water. This precision 

optimization improves water usage efficiency by 

approximately 5-10%, making it superior to the previous 

Type-1 system. 

Another major improvement was the dynamic adaptation 

to environmental changes. The Type-2 FIS dynamically 

adjusted relay times based on real-time environmental 

feedback, preventing abrupt changes in irrigation schedules. 

In Type-1 FIS, relay activations often showed sharp variations 

due to overly sensitive responses to minor temperature 

fluctuations. The introduction of UMF and LMF in Type-2 

logic led to smoother transitions, thereby improving system 

stability and reliability. 

The performance improvements of the Type-2 FIS were 

evaluated by comparing its irrigation efficiency, adaptability, 

and stability with those of the previous Type-1 FIS. 

TABLE IIIII 

COMPARISON OF TYPE-1 AND TYPE-2 FUZZY LOGIC IN IRRIGATION CONTROL 

Features Type-1 Fuzzy 

Logic 

Type-2 Fuzzy Logic 

(New System) 

Handling of Sensor 

Noise 

Sensitive to 

variations 

More robust with 

FoU 

Relay Time Stability Slight fluctuations 

in similar inputs 

Stable across 

multiple tests 

Adaptability to 

Environmental 

Changes 

Moderate Highly adaptive 

Water Conservation 

Efficiency 

Improved over 

static irrigation 

Optimized, reducing 

excess irrigation by 

~10% 

Defuzzification 

Method 

Centroid Centroid of 

Centroids (CoC) 

 

The Type-2 Fuzzy Inference System demonstrated superior 

performance, with higher irrigation precision, better resilience 

to environmental fluctuations, and increased water efficiency. 

The improved uncertainty-handling mechanism ensures more 

stable relay activations, thereby preventing overwatering and 

under-irrigation, making it a more sustainable solution for 

smart irrigation systems. 

Over-irrigation was minimized to prevent excessive water 

loss, while the system effectively prevented under-irrigation, 

ensuring optimal soil moisture. By dynamically adjusting 

irrigation in response to real-time environmental conditions, 

the Type-2 FIS optimizes water conservation while 

maintaining plant health and agricultural productivity. The 

system reduced water use by approximately 10% relative to 

the previous Type-1 approach, making it a viable solution for 

sustainable irrigation management. The proposed Type-2 

Fuzzy Logic-based irrigation system is an efficient, adaptive, 

and sustainable solution for modern agricultural automation. 
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IV. CONCLUSION 

This study introduces an enhanced approach to sustainable 

agriculture by designing and implementing a solar-powered 

mist irrigation system that integrates Interval Type-2 Fuzzy 

Logic (IT2FLS) and Internet of Things (IoT) technologies. By 

combining real-time environmental sensing with 

photovoltaic-powered irrigation, the proposed system 

successfully demonstrates an efficient, adaptive, and 

sustainable solution for precision irrigation management. The 

results confirm the superiority of Type-2 Fuzzy Logic over 

Type-1 Fuzzy Logic, particularly in handling sensor 

uncertainties, stabilizing relay activations, and optimizing 

water usage. 

Unlike Type-1 Fuzzy Logic, which struggles with 

fluctuating sensor data, the Type-2 FIS incorporates Upper 

and Lower Membership Functions (UMF & LMF) and a 

Footprint of Uncertainty (FoU), leading to greater resilience 

in real-world environmental conditions. This enhanced 

uncertainty management enables more accurate and stable 

irrigation decisions, reducing overwatering and under-

irrigation risks. Experimental results demonstrate that the 

Type-2 FIS minimizes unnecessary irrigation activations, 

with relay times consistently classified as long, medium, or 

short depending on environmental conditions, thereby 

ensuring efficient water use. Also, the integration of IoT-

based remote monitoring and control improves system 

scalability and usability, making it a practical solution for 

greenhouse automation and precision farming applications. 

Beyond its immediate impact on water conservation and 

irrigation reliability, this system also addresses energy-

efficiency challenges by using solar energy as a sustainable 

power source. The integration of renewable energy with 

intelligent control reduces dependence on grid electricity or 

on fuel-based pumps, thereby making the system 

economically and environmentally viable. 

For future improvements, further research could 

incorporate additional environmental factors, such as wind 

speed, light intensity, and atmospheric humidity, to enhance 

irrigation decision-making. Expanding the system for larger 

agricultural fields and evaluating its performance under 

diverse climatic conditions would provide valuable insights 

into broader real-world applications. The findings of this 

study highlight the potential of integrating renewable energy, 

advanced Type-2 fuzzy control, and IoT technologies to 

develop resource-efficient and adaptive irrigation solutions 

that support sustainable farming practices in response to 

global environmental challenges.  
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