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Abstract—The increasing unpredictability of environmental conditions, such as temperature fluctuations, humidity variations, seasonal
shifts, and changing water availability, presents a significant challenge for sustainable food production. The increasing unpredictability
of environmental conditions, including temperature fluctuations, humidity variations, seasonal shifts, and changing water availability,
poses a significant challenge for sustainable food production. Although they are suitable for simple decision-making, conventional Type-
1 Fuzzy Logic-based irrigation systems struggle to manage sensor noise, environmental uncertainty, and changing field conditions,
resulting in sometimes ineffective water use and uneven irrigation management. This work presents a solar-powered mist irrigation
system that integrates Interval Type-2 Fuzzy Logic (IT2FLS) and Internet of Things (IoT) technologies to improve precision irrigation
management and address these issues. The proposed system employs IoT-based real-time environmental monitoring via Blynk and
ThingSpeak to enable dynamic irrigation adjustments in response to temperature and soil moisture fluctuations. Type-2 Fuzzy Logic
offers more reliable relay activation choices and greater robustness to sensor noise by incorporating Upper and Lower Membership
Functions (UMF & LMF) and a Footprint of Uncertainty (FoU) than conventional Type-1 FIS. Experimental data demonstrate that
the Type-2 Fuzzy model significantly reduces erroneous irrigation activations, maximizes water distribution, and increases system
flexibility in response to environmental changes. Using solar power further improves energy efficiency, thereby reducing dependence
on grid electricity and supporting environmentally friendly irrigation practices. This work demonstrates that, for contemporary
agriculture, Type-2 Fuzzy Logic-based smart irrigation offers a scalable, flexible, and cost-effective alternative. This study shows how
integrating renewable energy, advanced Type-2 fuzzy control, and IoT can create resource-efficient, adaptive irrigation systems
supporting sustainable farming amid environmental challenges.
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security [4], [5]. To address these challenges, innovative and
I. INTRODUCTION adaptive agricultural solutions are required. Research
identifies water availability, temperature, and soil moisture as
the most influential factors in determining crop productivity
[6], [7]. However, traditional irrigation systems often struggle
to optimize these variables, resulting in either overirrigation
or underirrigation. The integration of renewable energy
sources, such as solar power, along with advanced
environmental monitoring using the Internet of Things (IoT),
presents a promising approach to improving irrigation
efficiency and sustainability [8], [9].
Despite the benefits of intelligent irrigation, conventional
Type-1 Fuzzy Logic Systems (T1FLS) exhibit limitations in

The agricultural sector faces increasing challenges in
maintaining a stable and sustainable food supply due to
unpredictable environmental fluctuations [1]. Key factors
such as temperature variations, humidity changes, irregular
seasonal patterns, water availability, and pest outbreaks
significantly impact crop yield and agricultural productivity
[2], [3]. In Indonesia, where population growth continues to
rise, the demand for reliable and efficient food production has
become increasingly critical. Crop failures due to adverse
environmental conditions exacerbate the imbalance between
food supply and demand, posing a serious threat to food
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handling sensor noise, environmental uncertainty, and
imprecise data. As a result, decision-making based on Type-1
FIS is prone to fluctuations, affecting irrigation reliability and
resource efficiency [10]. Research has shown that Type-1
Fuzzy Logic struggles with handling uncertainty in real-world
applications, particularly in situations involving dynamic
environmental conditions and noisy sensor readings [11].
These limitations reduce the effectiveness of conventional
fuzzy controllers, making them less suitable for precision
irrigation in smart agriculture [12]. To overcome these
limitations, this study introduces a Type-2 Fuzzy Logic
System (T2FLS) that incorporates an additional uncertainty
layer via secondary membership functions. Unlike Type-1
FIS, Type-2 Fuzzy Logic Systems introduce Upper and
Lower Membership Functions (UMF & LMF) and a Footprint
of Uncertainty (FoU) to handle variations in sensor data [13].
These enhancements allow for more accurate, adaptive, and
stable decision-making, making Type-2 Fuzzy Logic a
powerful tool for intelligent irrigation [14].

Efficient water management is a key concern in agriculture,
especially in regions affected by climate variability and
prolonged dry spells. Traditional irrigation methods often lack
adaptability to dynamic environmental conditions, resulting
in inefficient water usage [15]. Prior studies indicate that
regulating soil moisture, maintaining optimal temperatures,
and controlling irrigation timing are essential for maximizing
crop yield and ensuring sustainable farming [16]. This
research proposes an adaptive irrigation system that
dynamically adjusts water delivery based on real-time
environmental inputs, ensuring efficient resource use while
preventing over- or under-irrigation. In addition to water
conservation, energy efficiency in agriculture presents
another major challenge. Conventional irrigation systems
typically depend on electricity grids or fuel-powered pumps,
leading to high operational costs and increased carbon
emissions [17], [18]. The integration of solar-powered
irrigation systems provides a sustainable alternative,
significantly reducing reliance on fossil fuels while lowering
energy costs [9]. By leveraging solar energy to power
irrigation components and environmental sensors, the system
aligns with global efforts toward eco-friendly and cost-
effective agricultural automation.

This study proposes a solar-powered smart irrigation
system, enhanced with Type-2 Fuzzy Logic and IoT-based
environmental monitoring. Unlike traditional systems, this
model dynamically adjusts irrigation duration based on
temperature and soil moisture variations, while handling
sensor uncertainties more effectively through Type-2 Fuzzy
Logic [19], [20]. The integration of IoT technology further
enhances the system’s real-time monitoring capabilities,
allowing for remote access and automated control. By
continuously adapting to environmental changes, the system
optimizes water usage, prevents unnecessary irrigation, and
enhances overall sustainability. Ultimately, this research aims
to design, implement, and evaluate a prototype of a solar-
powered mist irrigation system in a small-scale greenhouse.
By integrating Type-2 Fuzzy Logic, loT-based monitoring,
and renewable energy, the system offers an efficient, adaptive,
and sustainable solution for modern agriculture, ensuring
higher irrigation precision, improved water conservation, and
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enhanced agricultural resilience in response to changing
environmental conditions [21], [22].

II. MATERIALS AND METHODS

Recent research by Pascaris et al. [23] highlights the
potential for solar energy to achieve energy self-sufficiency in
agriculture. According to Benghanem et al. [1], solar-powered
greenhouses have demonstrated great potential in reducing
energy costs while maintaining optimal growing conditions
for plants. Similarly, Maraveas et al. [24] emphasized that
integrating renewable energy sources into agricultural
applications can enhance sustainability and improve irrigation
efficiency. Therefore, renewable energy can be effectively
utilized in irrigation systems, providing a reliable and eco-
friendly power supply for water distribution.

Other studies have demonstrated the effectiveness of IoT
in smart farming. For instance, Maulana et al. [25] developed
a smart greenhouse system that employs IoT to monitor and
control environmental variables, including temperature and
humidity. Their findings indicate that [oT-based systems can
significantly enhance the precision of agricultural operations,
thereby improving crop yields and resource conservation.
Additionally, effective IoT monitoring and control can be set
by fuzzy logic to ensure a precise control system that can
utilize resources more efficiently [26], [27], [28], [29], [30].

This study designs and implements a solar-powered smart
irrigation system that uses Interval Type-2 Fuzzy Logic to
control relay operation based on environmental conditions,
specifically temperature and soil moisture. The system, as
illustrated in Figure 1, is built on an ESP32 microcontroller
and uses sensors, actuators, and IoT communication to enable
real-time monitoring and automation.
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Fig. 1 System Block Diagram for Type-2 Fuzzy Logic-Based Solar PV-
Powered Mist Irrigation System

The mechanical design of the device, shown in Figure 2,
ensures that all components are securely housed and protected
from environmental exposure, facilitating reliable operation
in agricultural settings. The enclosure is designed to be
waterproof and  dust-resistant, shielding electronic



components such as the ESP32, relay, and sensors from
environmental elements. The mechanical layout includes a
solar panel mount optimized for sunlight exposure, allowing
efficient energy harvesting to sustain the system.

Fig. 2 Solar PV-Powered Mist Irrigation System Mechanical Design

A. Fuzzy Inference System (FIS) and Interval Type-2 Fuzzy
Logic Implementation

The Interval Type-2 Fuzzy Logic-based methodology
enhances traditional fuzzy inference by incorporating
secondary membership functions that model higher levels of
uncertainty than those in Type-1 Fuzzy Logic. This additional
uncertainty handling is particularly beneficial for sensor-
based systems where environmental factors introduce noise
and variability in sensor readings. Type-2 Fuzzy Membership
Functions are designed to incorporate an additional degree of
uncertainty, with the Upper Membership Function (UMF) and
Lower Membership Function (LMF) defined. These functions
provide a Footprint of Uncertainty (FoU), making the system
more robust to sensor noise and environmental fluctuations.
The system processes two input variables are Temperature (T)
[°C] and Soil Moisture (M) [%]. Each input is represented as
an Interval Type-2 Fuzzy Set, consisting of Primary
Membership Function (Upper & Lower Bound), which
represents general trends in sensor data, and Secondary
Membership Function (Footprint of Uncertainty - FoU),
which captures measurement noise and variations.

The mathematical representation of fuzzy sets, specifically
the Interval Type-2 Fuzzy Set, is defined for each input
variable x as follows:

A= {Ce e (), prmr (%)) | x € X3 (D

In this notation, pyyr(x) represents the Upper
Membership Function, while p;r(x) denotes the Lower
Membership Function. The variable X refers to the universal
set of input values.
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For temperature (T) in °C, the membership functions are

defined as follows:

1) Low Temperature:

uPMF(Ty = max(0, min(1, (20 — T)/15))
WEMF (T = max(0, min(1, (18 — T)/17))

2) Medium Temperature:

WUME (T = max(0, min((T — 15)/15, (35 — T)/15))
UEME (T = max(0, min((T — 17)/14, (33 — T)/14))

3) High Temperature:

Uiigh (T) = max(0, min(1, (T — 30)/15))
Uhten (T) = max(0, min(1, (T — 32)/13))

(@)

3

“)

For soil moisture ( M ) in %, the membership functions

follow a trapezoidal function:

1) Dry Soil:

pgf (M) = max(0, min(1, (30 — M)/20))
payy (M) = max(0, min(1, (28 — M)/22))

2) Optimal Moisture:

uip!" (M) = max(0, min((M —
e (M) = max(0, min((M — 27)/18, (63 — M)/18))

3) Wet Soil:

uYMF (M) = max(0, min(1, (M — 60)/20))
ukME (M) = max(0, min(1, (M — 62)/18))

(&)
25)/20, (65 — M)/20))

(6

)

For relay time (R) in milliseconds, the membership

functions are piecewise linear, with upper and lower
membership functions to account for uncertainties in
activation duration. The Type-2 fuzzy membership functions
for relay time are defined as follows:

1) Short Relay Time ( Ry ):

I
W (R) = !I

4000-2000"

R<0

0 <R <2000
2000 < R <4000
R > 4000

0,
1, R<0 ®)
I RrR-0
LMF ®) 41300—0’ 0 <R =1800
I = o
short _380R_ 1800 < R < 3800
3800-1800
Lo, R > 3800
2) Medium Relay Time ( R,,cqium )
(0, R < 3000
|_R3000_ " 3400 < R < 4000
Wi (R) = {
., 6000 < R < 8000
t8000—6000 R S 8000
(0, R < 3200 ®

LMF

Pmedium (R) = 4

I R-3200

3800-3200"
7800-R

Iero—«szoo'

y

3) Long Relay Time ( Ryy,g )

3200 < R <3800

6200 < R <7800
R > 7800



0, R <7000
R-7000

uﬂ?@)=%w%mw.7mo<Rsswo
1 R > 8000

(10)

0, R <7200
LMF _ R-7200
lmwm)—{%mnm.7mo<ks7%o
1, R >9000

The Fuzzy Inference System (FIS) applies Mamdani
Interval Type-2 fuzzy rules to determine the Relay Activation
Time (R) based on temperature and soil moisture inputs.
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Fig. 3 Type-2 Fuzzy Inference System Block Diagram

Fuzzy Rules:
1 IF Temperature is Low AND Soil Moisture is Dry
THEN Relay Time is Long.

2 IF Temperature is Low AND Soil Moisture is Optimal
THEN Relay Time is Medium.

3 IF Temperature is Low AND Soil Moisture is Wet
THEN Relay Time is Short.

4 IF Temperature is Medium AND Soil Moisture is Dry
THEN Relay Time is Long.

5 IF Temperature is Medium AND Soil Moisture is
Optimal THEN Relay Time is Medium.

6 IF Temperature is Medium AND Soil Moisture is Wet
THEN Relay Time is Short.

7 IF Temperature is High AND Soil Moisture is Dry
THEN Relay Time is Long.

8 IF Temperature is High AND Soil Moisture is Optimal
THEN Relay Time is Medium.

9 IF Temperature is High AND Soil Moisture is Wet
THEN Relay Time is Short.

TABLEI
Fuzzy RULES

Rule Temp (°C) Soil Moisture Relay Time
1 Low Dry Long

2 Low Optimal Medium

3 Low Wet Short

4 Moderate Dry Long

5 Moderate Optimal Medium

6 Moderate Wet Short
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Rule Temp (°C) Soil Moisture Relay Time
7 High Dry Long

8 High Optimal Medium

9 High Wet Short

B. Defuzzification Process

The defuzzification process is the final stage of an Interval
Type-2 Fuzzy Inference System (FIS), in which the fuzzy
output is converted into a crisp relay activation time. Unlike
Type-1 fuzzy logic, which applies a single centroid
calculation, Type-2 fuzzy logic introduces a Footprint of
Uncertainty (FoU), resulting in an interval-valued fuzzy set as
the output. To obtain a single crisp output, the Centroid of
Centroids (CoC) method is employed.

In a Type-1 FIS, the defuzzified output R is determined
using the centroid method, which is given by:

R = Jo FrelayTime (R)RAR
f_ﬂ HRelayTime (R)dR

)

where R represents the relay running time in milliseconds,
Hrelaytime (R) is the aggregated fuzzy membership function,
and ( is the universal domain of relay activation times. For
Type-2 FIS, the output is represented by an interval [RE, RY],
where R’ is the lower bound and RY is the upper bound of the
output fuzzy set. Using the Centroid of Centroids (CoC)
method, the crisp relay activation time R* is calculated as:

_ RE4RY
T2

R* (12)
where R' and RY are determined by integrating the Lower
and Upper Membership Functions (LMF and UMF) over the
domain. Mathematically, the Type-2 centroid bounds are
given by:

_ Jq HLMF(R)-RAR
h Joq pLME(R)AR
_ Jo pumr(R)-RdR
B Jq HUMF(R)AR

RL
(13)
RU

where pupvr(R) and pyme(R) represent the lower and upper
membership functions, respectively, defining the uncertainty
region of the fuzzy output.

Since Type-2 fuzzy logic produces an interval-valued
output, the final crisp relay time is obtained by averaging the
two centroid bounds, ensuring more stable decision-making
than the traditional Type-1 centroid method. This enhanced
defuzzification process yields more precise relay activation
times, reduces unnecessary water use, and improves noise
tolerance, ensuring optimal irrigation despite sensor
uncertainties. Additionally, it contributes to greater decision-
making stability by preventing excessive fluctuations in
irrigation schedules. By applying the CoC method, the system
achieves a more robust and adaptive irrigation control
mechanism, making Type-2 Fuzzy Logic a highly effective
solution for smart agriculture.

III. RESULTS AND DISCUSSION

The Interval Type-2 Fuzzy Inference System (FIS)
developed for the solar-powered mist irrigation system was
rigorously tested to evaluate its performance in dynamically
regulating irrigation in response to real-time environmental
conditions. The primary goal was to assess the impact of



Type-2 fuzzy logic in handling sensor uncertainties,
improving irrigation efficiency, and ensuring optimal water
conservation.

Unlike traditional Type-1 Fuzzy Logic, Type-2 Fuzzy
Logic incorporates an additional degree of uncertainty via
Upper Membership Functions (UMF) and Lower
Membership Functions (LMF), thereby providing a more
robust decision-making process. This capability enables
better adaptation to noisy sensor readings and fluctuating
environmental conditions, which is critical in agricultural
irrigation systems.

The system was tested under various environmental
conditions using temperature and soil moisture readings
collected within the following ranges:

Temperature (T): 5°C to 45°C
Soil Moisture (M): 15% to 90%
Output Relay Time (R): 1,866 ms to 8,897 milliseconds (mS)

To evaluate system adaptability, test scenarios were
carefully designed to reflect real-world irrigation conditions,
ensuring that the system responds appropriately to different
environmental states. Under high temperatures and dry soil,
the system was expected to apply prolonged irrigation
durations to compensate for rapid soil moisture loss. Under
moderate temperature conditions with optimal soil moisture,
medium irrigation durations were required to maintain
balanced hydration. Meanwhile, when soil moisture levels
were already high, the system needed to minimize irrigation
durations to prevent overwatering and unnecessary water
consumption.

The defuzzified relay times were classified into short,
medium, and long durations, and the results were compared
with those of the previous Type-1 Fuzzy Logic system to
assess improvements in stability, adaptability, and water-
conservation efficiency. By dynamically adjusting irrigation
based on real-time environmental conditions, the Type-2
Fuzzy Inference System (T2FIS) was evaluated for its ability
to optimize water usage, minimize unnecessary irrigation, and
enhance long-term sustainability in smart agriculture.

The test results obtained from the Interval Type-2 FIS are
summarized in Table 2, which presents the relay-time outputs
across various temperature and soil-moisture conditions.

TABLE III
RELAY TIME OUTPUTS FOR VARIOUS TEST USING TYPE-2 FUZZY LOGIC
Test Temp if(l)(l)lis " R_L R_.U R* Output
(°0) (%) (ms) (ms) (ms) Classification
1 15 15 9061 8733 8897  Long Time
2 10 50 5878 5666 5772  Medium Time
3 5 75 1866 2000 1933 Short Time
4 30 20 9061 8733 8897  Long Time
5 30 50 5878 5666 5772  Medium Time
6 30 85 1866 2000 1933 Short Time
7 45 15 9061 8733 8897  Long Time
8 40 50 5878 5666 5772  Medium Time
9 40 90 1866 2000 1933 Short Time

The results reveal several key improvements in the Interval
Type-2 Fuzzy Logic system compared to the previous Type-
1 implementation. One of the most significant advantages of
Type-2 fuzzy logic is its improved handling of sensor noise.
Since traditional Type-1 FIS relies on fixed membership
functions, it often struggles with fluctuating sensor readings,
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resulting in inconsistent relay times. In contrast, the Footprint
of Uncertainty (FoU) in Type-2 FIS accounts for sensor
imprecision, resulting in more stable and reliable irrigation
decisions.

Irrigation accuracy was also significantly improved. When
soil moisture levels were high (e.g., 75%—-90%), the relay time
was consistently reduced, ensuring minimal overwatering.
Conversely, when soil moisture was critically low (e.g., 15%—
20%), the system allocated longer irrigation durations to
ensure that crops received the required water. This precision
optimization improves water usage efficiency by
approximately 5-10%, making it superior to the previous
Type-1 system.

Another major improvement was the dynamic adaptation
to environmental changes. The Type-2 FIS dynamically
adjusted relay times based on real-time environmental
feedback, preventing abrupt changes in irrigation schedules.
In Type-1 FIS, relay activations often showed sharp variations
due to overly sensitive responses to minor temperature
fluctuations. The introduction of UMF and LMF in Type-2
logic led to smoother transitions, thereby improving system
stability and reliability.

The performance improvements of the Type-2 FIS were
evaluated by comparing its irrigation efficiency, adaptability,
and stability with those of the previous Type-1 FIS.

TABLE IIIII
COMPARISON OF TYPE-1 AND TYPE-2 FUZZY LOGIC IN IRRIGATION CONTROL

Features Type-1 Fuzzy Type-2 Fuzzy Logic
Logic (New System)
Handling of Sensor Sensitive to More robust with
Noise variations FoU
Relay Time Stability Slight fluctuations ~ Stable across
in similar inputs multiple tests
Adaptability to Moderate Highly adaptive
Environmental
Changes
Water Conservation Improved over Optimized, reducing
Efficiency static irrigation excess irrigation by
~10%
Defuzzification Centroid Centroid of
Method Centroids (CoC)

The Type-2 Fuzzy Inference System demonstrated superior
performance, with higher irrigation precision, better resilience
to environmental fluctuations, and increased water efficiency.
The improved uncertainty-handling mechanism ensures more
stable relay activations, thereby preventing overwatering and
under-irrigation, making it a more sustainable solution for
smart irrigation systems.

Over-irrigation was minimized to prevent excessive water
loss, while the system effectively prevented under-irrigation,
ensuring optimal soil moisture. By dynamically adjusting
irrigation in response to real-time environmental conditions,
the Type-2 FIS optimizes water conservation while
maintaining plant health and agricultural productivity. The
system reduced water use by approximately 10% relative to
the previous Type-1 approach, making it a viable solution for
sustainable irrigation management. The proposed Type-2
Fuzzy Logic-based irrigation system is an efficient, adaptive,
and sustainable solution for modern agricultural automation.



IV.CONCLUSION

This study introduces an enhanced approach to sustainable
agriculture by designing and implementing a solar-powered
mist irrigation system that integrates Interval Type-2 Fuzzy
Logic (IT2FLS) and Internet of Things (I0T) technologies. By

combining real-time  environmental sensing  with
photovoltaic-powered irrigation, the proposed system
successfully demonstrates an efficient, adaptive, and

sustainable solution for precision irrigation management. The
results confirm the superiority of Type-2 Fuzzy Logic over
Type-1 Fuzzy Logic, particularly in handling sensor
uncertainties, stabilizing relay activations, and optimizing
water usage.

Unlike Type-1 Fuzzy Logic, which struggles with
fluctuating sensor data, the Type-2 FIS incorporates Upper
and Lower Membership Functions (UMF & LMF) and a
Footprint of Uncertainty (FoU), leading to greater resilience
in real-world environmental conditions. This enhanced
uncertainty management enables more accurate and stable
irrigation decisions, reducing overwatering and under-
irrigation risks. Experimental results demonstrate that the
Type-2 FIS minimizes unnecessary irrigation activations,
with relay times consistently classified as long, medium, or
short depending on environmental conditions, thereby
ensuring efficient water use. Also, the integration of IoT-
based remote monitoring and control improves system
scalability and usability, making it a practical solution for
greenhouse automation and precision farming applications.

Beyond its immediate impact on water conservation and
irrigation reliability, this system also addresses energy-
efficiency challenges by using solar energy as a sustainable
power source. The integration of renewable energy with
intelligent control reduces dependence on grid electricity or

on fuel-based pumps, thereby making the system
economically and environmentally viable.
For future improvements, further research could

incorporate additional environmental factors, such as wind
speed, light intensity, and atmospheric humidity, to enhance
irrigation decision-making. Expanding the system for larger
agricultural fields and evaluating its performance under
diverse climatic conditions would provide valuable insights
into broader real-world applications. The findings of this
study highlight the potential of integrating renewable energy,
advanced Type-2 fuzzy control, and IoT technologies to
develop resource-efficient and adaptive irrigation solutions
that support sustainable farming practices in response to
global environmental challenges.
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