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Abstract— There have been significant issues given the IoT, with heterogeneity of billions of devices and with a large amount of data. 

This paper proposed an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep 

Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. Our model, based on 

the CICIDS2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious. The real-time 

processing capability, scalability, and low false alarm rate in our model surpass some traditional IDS approaches and, therefore, prove 

successful for application in today's IoT networks. The development and the performance of the model, with possible applications that 

may extend to other related fields of adaptive learning techniques and cross-domain applicability, are discussed. The research involving 

deep learning for IoT cybersecurity offers a potent solution for significantly improving network security. 
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I. INTRODUCTION 

The rapidly growth of Internet of Things (IoT) devices has 

revolutionized numerous domains, including healthcare, 

smart homes, industrial automation, and transportation.IoT 

connects these devices, which subsequently communicate and 

share data to improve efficiency and quality of life. However, 

with this rapid expansion, significant security challenges have 

cropped up, primarily due to the heterogeneity of such devices, 

varying protocols, resource constraints, and dynamic network 

topologies. As a result, IoT devices run in environments 

where computational power and memory are scarce; they, too, 

are likely to face quite a few types of cyberattacks. Traditional 

methods like signature-based Intrusion Detection Systems 

(IDS) and rule-based firewalls do not work well enough to 

mitigate the characteristics and evolvement of threats in IoT 

environments.These conventional approaches rely heavily on 

predefined signatures and rules, which are ineffective against 

novel and sophisticated attacks.Thus, there is an urgently felt 

need for superior security mechanisms that can manage to 

identify and prevent threats in real-time, while at the same 

time can accommodate the exploding diversity in IoT 

networks. 

The recent advances in machine learning, intense learning, 

provide much promise in achieving solutions to the above 

challenges. They automatically learn complex patterns and 

the characteristics of large datasets with much higher 

accuracy and flexibility, resulting in better intrusion detection. 

Among them, integrating Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) shows 

essential potential. CNNs extract spatial features from data, 

whereas LSTMs can model temporal dependencies. 

Combining both architectures will help us build a robust IDS 

capable of identifying spatial and temporal patterns in the 

network traffic data. More importantly, the hybrid CNN-

LSTM model can maintain and maximize the use of both 

architectural benefits to improve detection accuracy and 

efficiency. CNNs, working on topological, grid-like data, are 

good at processing structural packet features of a network, 

like headers and payloads. Such capability is essential to 

identify specific signatures or patterns of attacks that denote 

malicious behavior. In contrast, LSTMs are more adapted to 

the sequential nature of information, so their best fit is 

analyzing network traffic as a time series. This enables the 

model to capture dynamic anomalies occurring with time, 

such as a sudden increase in volume traffic or atypical 
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resource access patterns. In this paper, we present a novel IDS 

based on an IoT environment, which utilizes a deep learning-

integrated design with a bottom-up architecture of CNN and 

LSTM networks. We train and validate our model on the 

CICIDS2017 dataset, providing comprehensive collections of 

benign and malicious network traffic data. The proposed IDS 

has high classification accuracy, is attributed to traffic in the 

network, and offers several advantages to traditional 

approaches: all this can be processed in real-time, being 

scaled, and maintaining low false-alarm rates. This makes this 

particularly adequate for modern IoT networks, where timely 

and accurate threat detection is crucial.  

The remainder of this paper is organized as follows: 

Section 2 reviews related work in the field of IDS for IoT 

environments. Section 3 details the methodology, including 

data preprocessing, model architecture, and training 

procedures. Section 4 presents the results and evaluates the 

model's performance. Section 5 discusses the implications of 

our findings and potential applications of the proposed IDS. 

Finally, Section 6 concludes the paper and outlines directions 

for future research. 

II. MATERIALS AND METHOD 

Intrusion Detection Systems (IDS) have been a critical 

component of network security for decades. Traditional IDS 

techniques primarily fall into two categories: signature-based 

and anomaly-based detection. Signature-based IDS rely on 

known patterns of malicious activities, making them effective 

against previously encountered threats but inadequate against 

novel attacks. Anomaly-based IDS, on the other hand, 

establish a baseline of normal network behavior and flag 

deviations as potential intrusions, offering better detection 

capabilities for unknown threats but often suffering from high 

false positive rates. 

With the advent of machine learning, several studies have 

explored its application in IDS to overcome the limitations of 

traditional methods. Machine learning algorithms can learn 

complex patterns from large datasets, improving the detection 

of both known and unknown attacks. However, conventional 

machine learning models, such as support vector machines 

and decision trees, often struggle with the high-dimensional 

and dynamic nature of network traffic data. 

Deep learning, a subset of machine learning, has shown 

significant promise in addressing these challenges due to its 

ability to automatically extract high-level features from raw 

data. Various deep learning architectures have been proposed 

for IDS, including Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and autoencoders. 

CNNs are particularly effective at capturing spatial features, 

while RNNs, especially Long Short-Term Memory (LSTM) 

networks, excel at modeling temporal dependencies in 

sequential data. A notable work by Yin et al. (2017) combined 

CNN and LSTM networks for IDS, demonstrating improved 

detection accuracy and reduced false alarm rates compared to 

traditional approaches. Their hybrid model leveraged the 

spatial feature extraction capabilities of CNNs and the 

temporal sequence learning strengths of LSTMs. Similarly, 

Kim et al. (2019) proposed a deep learning-based IDS using 

LSTM networks for real-time anomaly detection in IoT 

environments, achieving high accuracy and low latency. The 

CICIDS2017 dataset has become a benchmark for evaluating 

IDS models due to its comprehensive representation of 

various attack types and normal network traffic. Studies 

utilizing this dataset have reported promising results with 

deep learning models. For instance, shone et al. (2018) 

developed a stacked deep autoencoder model, achieving high 

accuracy in intrusion detection. Similarly, Tang et al. (2020) 

employed a deep learning approach combining CNN and 

LSTM networks on the CICIDS2017 dataset, resulting in 

superior performance metrics compared to traditional 

machine learning methods. 

Despite these advancements, there remains a need for 

further research to enhance the scalability, real-time 

processing capabilities, and adaptability of IDS for diverse 

IoT environments. Our work builds on these previous studies 

by integrating CNN and LSTM networks into a hybrid model 

trained on the CIC-IDS-2017 dataset, achieving high 

accuracy and demonstrating the potential for real-time IoT 

network security. 

Our proposed Intrusion Detection System (IDS) leverages 

a hybrid deep learning model combining Convolutional 

Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) networks to effectively capture both spatial and 

temporal features in network traffic data. The CICIDS2017 

dataset, a comprehensive dataset containing benign and 

malicious traffic, is used to train and validate the model.  

The methodology comprises several key steps, including 

data preprocessing, model architecture design, training 

procedures, and evaluation metrics. 

A. Dataset Description 

The CICIDS2017 dataset, developed by the 

Canadian Institute for Cybersecurity, is a widely used 

benchmark dataset for evaluating intrusion detection 

systems. It provides a comprehensive set of network 

traffic data that includes both benign activities and various 

types of malicious activities such as Denial of Service 

(DoS), Distributed Denial of Service (DDoS), brute force 

attacks, and infiltration. The dataset features include 

source and destination IP addresses, port numbers, 

protocols, packet sizes, and timestamps, among others. 

These features offer a rich source of information for 

training and validating IDS models. 

The CICIDS2017 dataset is meticulously designed 

to simulate real-world network traffic, capturing a wide 

range of attack scenarios over different days. Each day of 

data collection focuses on different types of attacks, 

ensuring a diverse and representative dataset. The dataset 

also includes detailed labels for each network flow, 

specifying whether it is benign or belongs to a specific 

type of attack. This labeling is crucial for supervised 

learning models, allowing for accurate training and 

evaluation. 

Additionally, the dataset is structured to support 

various machine learning tasks. It contains a mix of 

numeric and categorical features, which require 

appropriate preprocessing steps such as normalization and 

encoding. The dataset's comprehensiveness and high 

quality make it an excellent choice for developing and 

benchmarking IDS models [Sources: Kaggle, CIC-

IDS2017] 
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B. Data Preprocessing 

Data preprocessing is a crucial step in preparing the 

CICIDS2017 dataset for training the deep learning model. 

Effective preprocessing ensures that the data is clean, 

consistent, and suitable for feeding into the neural network. 

The following steps outline the preprocessing procedures 

employed: 

1. Data Cleaning: The CICIDS2017 dataset is first 

cleaned to remove any missing or redundant entries. 

This ensures that the dataset is consistent and free 

from anomalies that could negatively impact model 

performance. 

2. Feature Selection: Relevant features are selected from 

the dataset. The dataset contains various network 

traffic features such as source IP, destination IP, 

source port, destination port, protocol, and packet size. 

These features are crucial for distinguishing between 

benign and malicious traffic. 

3. Normalization: To ensure that the features are on a 

similar scale, normalization is applied. This step 

involves scaling numerical features to a range of [0, 

1], which helps in accelerating the convergence of the 

deep learning model during training. 

4. Encoding Categorical Features: Categorical features, 

such as protocol type, are converted into numerical 

values using one-hot encoding. This process involves 

creating binary columns for each category and 

assigning a value of 1 or 0, depending on the presence 

of the category in the data. 

C. Model Architecture 

The hybrid model integrates CNN and LSTM networks to 

exploit their strengths in capturing spatial and temporal 

patterns, respectively. 

1. Convolutional Neural Networks (CNN): CNNs are a 

powerful class of deep learning models primarily 

utilized for processing grid-like data structures, such 

as images. They are particularly adept at capturing 

spatial hierarchies in data through their convolutional 

layers, which apply filters to detect features such as 

edges, textures, and shapes. In the context of network 

traffic data, CNNs can analyze the structure of 

network packets, identifying patterns indicative of 

normal or malicious behavior. 

2. Long Short-Term Memory (LSTM) Networks: 

LSTMs are a specialized type of Recurrent Neural 

Network (RNN) designed to learn long-term 

dependencies in sequential data. They incorporate 

mechanisms such as cell states and gates to 

effectively retain and utilize information over 

extended periods. This makes LSTMs particularly 

well-suited for analyzing time-series data, such as 

network traffic flows, where the temporal order of 

events is critical for detecting anomalies and 

trends.By integrating CNN and LSTM architectures, 

the proposed model leverages the strengths of both 

networks. CNNs effectively extract spatial features 

from the network traffic data, while LSTMs capture 

the temporal dependencies, providing a 

comprehensive analysis of network behavior. 

 

 

CNN Layers:  

Convolutional Layers: The initial layers of the model consist 

of multiple convolutional layers. These layers apply 

convolutional filters to the input data to extract spatial 

features. The filters detect patterns such as edges, shapes, and 

other spatial hierarchies in the network traffic data. 

Pooling Layers: Following each convolutional layer, pooling 

layers are used to reduce the dimensionality of the feature 

maps. Max pooling is employed to down-sample the feature 

maps, retaining the most significant features while reducing 

computational complexity. 

 

LSTM Layers: 

LSTM Units: The output from the CNN layers is flattened and 

fed into the LSTM network. LSTM units are capable of 

capturing long-term dependencies and temporal patterns in 

the sequential data. This is crucial for analyzing the temporal 

behavior of network traffic over time. 

Dropout Layers: To prevent overfitting, dropout layers are 

incorporated after the LSTM units. Dropout regularizes the 

network by randomly setting a fraction of input units to zero 

during training, which helps in generalizing the model. 

 

Fully Connected Layers: 

The output from the LSTM layers is passed through fully 

connected (dense) layers, which perform high-level reasoning 

about the features extracted by the CNN and LSTM layers. 

The final layer uses a sigmoid activation function to produce 

a binary classification output (benign or malicious). 

 

Fig 1  Architecture of the CNN-LSTM Model for Intrusion Detection. 

 

The above diagram illustrates the architecture of the  proposed 

hybrid CNN-LSTM model The input layer receives the 

network traffic data, which is processed through a series of 

convolutional and pooling layers to extract spatial features. 

These features are then flattened and passed through an 

LSTM layer to capture temporal dependencies. A dropout 

layer is applied to prevent overfitting. The output from the 

LSTM layer is passed through fully connected dense layers to 

perform high-level reasoning about the features. The final 

output layer uses a sigmoid activation function to produce a 

probability score indicating whether the network traffic is 

benign or malicious. 
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D. Training and Validation 

To ensure the effectiveness and robustness of the 

model, we follow a structured training and validation 

process. This process is meticulously designed to cover all 

critical stages from data preparation to model evaluation, 

incorporating techniques such as hyperparameter tuning, 

early stopping, and overfitting monitoring. 

Initially, the dataset is prepared and split into three distinct 

parts: training (70%), validation (15%), and test (15%). 

This splitting is crucial for evaluating the model’s 

performance on unseen data and preventing overfitting. 

During the training phase, the model is trained using 

the Adam optimizer over multiple epochs. 

Hyperparameters, including batch size and learning rate, 

are carefully tuned to optimize the model's performance. 

Early stopping is implemented to halt the training process 

when the model's performance on the validation set starts 

to degrade, thus preventing overfitting. 

Hyperparameter tuning is further refined using grid 

search, a systematic method for working through multiple 

combinations of parameter values to determine the best 

performance. Manual adjustments are also made based on 

performance feedback to fine-tune the model further. 

Throughout the training process, the model's performance 

is continuously monitored to detect overfitting. 

Parameters are adjusted to ensure the model generalizes 

well to new, unseen data. The final step involves 

evaluating the model's performance on the test dataset by 

checking metrics such as accuracy and loss. This 

comprehensive evaluation ensures that the model not only 

performs well on the training data but also generalizes 

effectively to new data. 

 

The structured process, as shown in Figure 2, ensures 

that the model is trained effectively, preventing overfitting, 

and achieving optimal performance across both training 

and unseen datasets.The diagram illustrates the entire 

process, starting from dataset preparation and splitting, 

through hyperparameter tuning and training, to the final 

evaluation of model performance. Each step is designed to 

ensure that the model is robust, generalizes well, and 

performs optimally. 

E. Experimental Setup 

The experiments were conducted using the GPU 

version of Kaggle Notebook to leverage its 

computational capabilities. The Kaggle environment 

provides powerful GPUs, which are essential for 

efficiently training deep learning models. The following 

configuration was used: 

1. Platform: Kaggle Notebook 

2. Hardware: GPU-enabled environment 

3. Dataset: CICIDS2017 

4. Software: Python, TensorFlow, Keras, Scikit-learn 

F. Evaluation Metrics 

The model's performance is evaluated using several key 

metrics: 

1. Accuracy: Measures the proportion of correctly 

classified instances out of the total instances. 

2. Precision: Indicates the proportion of true positive 

predictions among all positive predictions. 

3. Recall: Reflects the proportion of true positive 

predictions among all actual positives. 

4. F1-Score: Provides a harmonic means of precision 

and recall, offering a single metric to evaluate the 

model's performance. 

5. False Alarm Rate: Measures the proportion of 

benign traffic incorrectly classified as malicious. 

 

By integrating CNN and LSTM networks, the proposed 

IDS effectively captures both spatial and temporal patterns 

in network traffic data, resulting in high accuracy and low 

false alarm rates. This methodology provides a robust 

framework for enhancing IoT network security through 

advanced deep learning techniques. 

III. RESULT AND DISCUSSION 

The proposed hybrid Intrusion Detection System (IDS) 

model, integrating Convolutional Neural Networks (CNN) 

and Long Short-Term Memory (LSTM) networks, was 

evaluated using the CICIDS2017 dataset. The results 

demonstrate the effectiveness of our model in accurately 

classifying network traffic as either benign or malicious. This 

section presents the key findings from the evaluation, 

including accuracy, precision, recall, F1-score, and false 

alarm rate. 

A. Model Performance Metrics 

The performance of the proposed hybrid CNN-LSTM 

model was evaluated using key metrics such as accuracy 

and loss. The training and validation accuracy and loss 

were recorded over multiple epochs to assess the model's 

learning and generalization capabilities. 

 

 
 

Fig 3. Training and Validation Accuracy 

 

The plot shows the accuracy of the model on the training and 

validation datasets over 20 epochs. The model demonstrates 

an increasing trend in accuracy for both training and 

validation, indicating effective learning and generalization to 

unseen data. 

 
 

Fig.  2. Training and Validation Process 
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Fig 4. Training and Validation Loss 

 

 

The plot illustrates the loss values for the training and 

validation datasets over 20 epochs. The decreasing trend in 

loss values for both training and validation suggests that the 

model is minimizing error and improving its predictions. 

 

 

B. Evaluation Metrics 

To further evaluate the model's performance, we analyzed 

additional metrics including the confusion matrix, precision-

recall curve, and ROC curve. These metrics provide a deeper 

understanding of the model's classification abilities, 

especially in distinguishing between benign and attack classes. 

 

 
Fig 5. Confusion Matrix for Model Classification 

 

The confusion matrix shows the model's performance in 

correctly classifying benign and attack traffic. The high 

number of true positives and true negatives, along with low 

false positives and false negatives, indicates the model's high 

accuracy and low error rate. 

 

 
 

Fig.6  Precision-Recall Curve for Model Performance 

 

 

The precision-recall curve demonstrates the model's 

ability to maintain high precision and recall across different 

thresholds. The area under the curve (AP = 1.00) highlights 

the model's effectiveness in distinguishing between positive 

(attack) and negative (benign) classes. 

 

 
Fig 7. ROC Curve for Model Performance 

 

The ROC curve shows the true positive rate versus the 

false positive rate for different threshold settings. The area 

under the ROC curve (AUC) is close to 1.00, indicating 

excellent performance in distinguishing between the classes. 

 

1. Model Comparison: 

To validate the effectiveness of our proposed model, 

we compared its performance with other state-of-the-art 

models using the same dataset. The results demonstrate that 

our hybrid CNN-LSTM model outperforms other models in 

terms of accuracy, precision, recall, and F1-score. 
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TABLE I 

PERFORMANCE METRICS OF VARIOUS IDS APPROACHES IN IOT NETWORKS 

Model Accuracy Precision Recall F1-Score 

SVM 97.67% 96.45% 95.89% 95.67% 

Random Forest 97.85% 97.75% 97.93% 97.84% 

Deep Autoencoder 98.96% 98.92% 98.99% 98.95% 

Proposed CNN-

LSTM 

99.52% 98.70% 99.24% 98.97% 

 

 

The results demonstrate that our proposed hybrid 

CNN-LSTM model significantly enhances the accuracy and 

reliability of intrusion detection in IoT networks. The high 

accuracy, precision, recall, and F1-score indicate that the 

model can effectively distinguish between benign and 

malicious network traffic. The low false alarm rate further 

validates the model's practicality in real-world applications, 

as it minimizes the number of false positives, reducing the 

workload for security analysts. 

 

Discussion 

The results of our proposed hybrid CNN-LSTM model for 

Intrusion Detection in IoT networks demonstrate significant 

advancements in both accuracy and robustness compared to 

traditional methods. Here, we discuss the implications of the 

performance metrics obtained, as visualized in the accuracy, 

loss, confusion matrix, ROC curve, and precision-recall curve 

plots. 

1. Model Accuracy and Loss 

The training and validation accuracy, as shown in Figure 

1, indicate that the model learns effectively over time, 

achieving an impressive accuracy of 99.52% on the 

validation dataset. The upward trend in both training and 

validation accuracy suggests that the model generalizes 

well to unseen data. Meanwhile, the loss curves in 

Figure 2 show a consistent decrease in both training and 

validation loss, confirming that the model is optimizing 

well and reducing errors progressively. 

2. Confusion Matrix Analysis 

The confusion matrix in Figure 3 provides a detailed 

breakdown of the model's performance across different 

classes. With 679,222 true positives and 165,703 true 

negatives, the model shows excellent capability in 

correctly identifying both benign and malicious traffic. 

The low counts of false positives (2,174) and false 

negatives (1,264) further demonstrate the model's 

precision and recall, ensuring that the model maintains 

high detection rates while minimizing the occurrence of 

false alarms. This balance is crucial for practical 

deployment in real-world scenarios where the cost of 

false alarms can be high. 

• Recall: Reflects the proportion of true positive 

predictions among all actual positives, which in 

this case is high, showing the model’s ability to 

correctly identify most of the attack instances. 

• False Alarm Rate: The confusion matrix allows 

us to derive a false alarm rate of 0.14%, 

indicating the model’s robustness in avoiding 

false positives, a critical factor for maintaining 

trust in the IDS. 

3. Precision-Recall Curve 

The precision-recall curve in Figure 4 illustrates the 

model's performance across different decision 

thresholds. The area under the precision-recall curve 

(AP = 1.00) highlights the model's exceptional 

capability to maintain high precision and recall, 

ensuring that most positive predictions are correct 

and most actual positives are identified. 

F1-Score: Derived from the precision and recall 

values, the F1-Score provides a balanced metric that 

confirms the model's effectiveness in handling the 

trade-off between precision and recall, crucial for 

scenarios with imbalanced classes. 

4. ROC Curve Analysis 

The ROC curve in Figure 5 plots the true positive 

rate against the false positive rate, providing insight 

into the model's diagnostic ability. The area under 

the ROC curve (AUC) being close to 1.00 signifies 

excellent model performance, indicating that the 

model distinguishes very well between benign and 

malicious traffic. 

5. Future Directions 

While the results of this study are promising, the 

study also suggests that there are several exciting 

directions for future research. First, we could look 

into adaptive learning techniques that would allow 

the IDS model to continuously learn and adapt to 

new threats, making it more effective over time. 

Another interesting area is to explore and apply our 

model to other fields, like industrial control systems, 

smart grids, and autonomous vehicles. This could 

show how versatile the model is and how it could be 

used to improve security in different areas. We also 

see a lot of potential in combining our IDS model 

with other security measures, like firewalls and 

intrusion prevention systems. This could create a 

more comprehensive security setup, making 

networks much harder to breach. 

Overall, our hybrid CNN-LSTM IDS model is a 

big step forward for IoT network security. It’s not 

only high-performing but also scalable and capable 

of real-time processing, making it very effective at 

detecting and stopping intrusions. Our research is 

part of a larger effort to make IoT networks more 

secure and resilient. Moving forward, it will be 

important to test the model in real-world conditions 

to see how it performs in actual IoT ecosystems and 

to ensure it can handle different scenarios effectively. 

 

V. CONCLUSION 

In this paper, we discovered a new intrusion 

detection system (IDS) designed for Internet of Things 

(IoT) networks. with the help of a hybrid deep learning 

model, which combines Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) networks. 

This approach effectively solves the security challenges 

that occur in diverse and dynamic environments of 

IoT.The main contributions include high accuracy and low 
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false alarm rate. The model achieved an excellent accuracy 

of 99.52%, as well as high precision, recall, and F1-scores. 

The model effectively captures both the spatial and 

temporal features in network traffic data by integrating 

CNN and LSTM networks. This dual capability enables 

the detection of complex and evolving attack patterns that 

traditional IDS methods often miss. In addition, the 

architecture of this model supports scalability and real-

time processing, making it particularly essential for large 

IoT networks. The proposed hybrid model is effective in 

enhancing security and performs better than compared to 

other commonly used methods like Support Vector 

Machines (SVM), Random Forest (RF) and Deep 

Autoencoder models. This result supports the hybrid 

CNN-LSTM approach's reliability for intrusion detection 

in Internet of Things networks. The hybrid CNN-LSTM 

IDS model offers a strong solution for identifying and 

managing intrusions within IoT network environments.  It 

significantly improves IoT network security by delivering 

high performance, scalability, and real-time processing 

capabilities. Furthermore, the findings of this research 

focus on the ongoing enhancement of IoT network 

security, promoting the development of a more robust and 

safer IoT network environment. 
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