The Potential of Coir Composite in The Production of Spare Parts and Equipment for Vehicles Transporting Goods by Road and Water

Dinh Tuyen Nguyen (1), Thi Bich Ngoc Nguyen (2)
(1) Ho Chi Minh city University of Transport, Ho Chi Minh city, Vietnam
(2) Ho Chi Minh city University of Transport, Ho Chi Minh city, Vietnam
How to cite (IJASEIT) :
Nguyen, D. T., & Nguyen, T. B. N. (2020). The Potential of Coir Composite in The Production of Spare Parts and Equipment for Vehicles Transporting Goods by Road and Water. International Journal of Advanced Science Computing and Engineering, 2(3). https://doi.org/10.62527/ijasce.2.3.107
Traditional materials used in the production of industrial equipment parts are now wood and metal. But these materials are gradually scarce, the need to find alternative materials is necessary. On that basis, there have been many studies on fiber reinforced composites in which glass fiber reinforcement is widely applied. However, fiberglass-reinforced composites are difficult to decompose and recycle, leading to serious environmental impacts. To solve this problem, scientists are working to apply bio-fibers to replace glass fibers. In recent years, there have been many studies on coir fiber and its application in the manufacture of coir fiber fortified composites. This article reviews the potential of coir fiber fortified materials applied in the production of industrial products.

S. Surendran and J. Venkata Ramana Reddy, “Numerical simulation of ship stability for dynamic environment,†Ocean Eng., vol. 30, no. 10, pp. 1305–1317, Jul. 2003, doi: 10.1016/S0029-8018(02)00109-9.

F. Li, F. Goerlandt, and P. Kujala, “Numerical simulation of ship performance in level ice: A framework and a model,†Appl. Ocean Res., vol. 102, p. 102288, Sep. 2020, doi: 10.1016/j.apor.2020.102288.

A. Tuan Hoang et al., “Thermodynamic Simulation on the Change in Phase for Carburizing Process,†Comput. Mater. Contin., vol. 68, no. 1, pp. 1129–1145, 2021, doi: 10.32604/cmc.2021.015349.

G. Theotokatos and V. Tzelepis, “A computational study on the performance and emission parameters mapping of a ship propulsion system,†Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 229, no. 1, pp. 58–76, Feb. 2015, doi: 10.1177/1475090213498715.

X. P. Nguyen, “A simulation study on the effects of hull form on aerodynamic performances of the ships,†2020, p. 020015. doi: 10.1063/5.0000140.

S. Zhou, J. Zhou, and Y. Zhu, “Chemical composition and size distribution of particulate matters from marine diesel engines with different fuel oils,†Fuel, vol. 235, pp. 972–983, Jan. 2019, doi: 10.1016/j.fuel.2018.08.080.

M. Zhu, Y. Ma, and D. Zhang, “Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine,†Appl. Energy, vol. 91, no. 1, pp. 166–172, Mar. 2012, doi: 10.1016/j.apenergy.2011.09.007.

X. P. Nguyen, D. C. Nguyen, and L. H. Duong, “A review of solutions to improve the efficiency of hydrogen-rich catalysts for engine application,†2020, p. 040009. doi: 10.1063/5.0030996.

P. Andreadis, A. Zobanakis, C. Chryssakis, and L. Kaiktsis, “Effects of fuel injection parameters on performance and emissions formation in a large-bore marine diesel engine,†Int. J. Engine Res., vol. 12, no. 1, pp. 14–29, Jan. 2010, doi: 10.1243/14680874JER511.

A. T. Hoang, “Applicability of fuel injection techniques for modern diesel engines,†2020, p. 020018. doi: 10.1063/5.0000133.

C. W. Mohd Noor, M. M. Noor, and R. Mamat, “Biodiesel as alternative fuel for marine diesel engine applications: A review,†Renew. Sustain. Energy Rev., vol. 94, pp. 127–142, Oct. 2018, doi: 10.1016/j.rser.2018.05.031.

A. Tuan Hoang et al., “A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels,†Sustain. Energy Technol. Assessments, vol. 47, p. 101416, Oct. 2021, doi: 10.1016/j.seta.2021.101416.

B. K. Debnath, U. K. Saha, and N. Sahoo, “A comprehensive review on the application of emulsions as an alternative fuel for diesel engines,†Renew. Sustain. Energy Rev., vol. 42, pp. 196–211, Feb. 2015, doi: 10.1016/j.rser.2014.10.023.

X. P. Nguyen, A. T. Hoang, A. I. Ölçer, D. Engel, V. V. Pham, and S. K. Nayak, “Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine,†Fuel Process. Technol., vol. 214, p. 106687, Apr. 2021, doi: 10.1016/j.fuproc.2020.106687.

X. P. Nguyen and A. T. Hoang, “The Flywheel Energy Storage System: An Effective Solution to Accumulate Renewable Energy,†in 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020, 2020, pp. 1322–1328. doi: 10.1109/ICACCS48705.2020.9074469.

S. Ould Amrouche, D. Rekioua, T. Rekioua, and S. Bacha, “Overview of energy storage in renewable energy systems,†Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 20914–20927, Dec. 2016, doi: 10.1016/j.ijhydene.2016.06.243.

A. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,†Appl. Energy, vol. 231, pp. 138–166, 2018.

F. Baldi, A. Azzi, and F. Maréchal, “From renewable energy to ship fuel: ammonia as an energy vector and mean for energy storage,†2019, pp. 1747–1752. doi: 10.1016/B978-0-12-818634-3.50292-7.

O. Çetin and M. Ziya Sogut, “A new strategic approach of energy management onboard ships supported by exergy and economic criteria: A case study of a cargo ship,†Ocean Eng., vol. 219, p. 108137, Jan. 2021, doi: 10.1016/j.oceaneng.2020.108137.

R. Dell and D. A. JRand, “Energy storage - a key technology for global energy sustainability,†J. Power Sources, vol. 100, no. 1–2, pp. 2–17, Nov. 2001, doi: 10.1016/S0378-7753(01)00894-1.

A. T. Hoang et al., “Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications,†Energy Policy, vol. 154, p. 112322, Jul. 2021, doi: 10.1016/j.enpol.2021.112322.

L. Grandell, A. Lehtilä, M. Kivinen, T. Koljonen, S. Kihlman, and L. S. Lauri, “Role of critical metals in the future markets of clean energy technologies,†Renew. Energy, vol. 95, pp. 53–62, Sep. 2016, doi: 10.1016/j.renene.2016.03.102.

P. Ni, X. Wang, and H. Li, “A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines,†Fuel, vol. 279, p. 118477, Nov. 2020, doi: 10.1016/j.fuel.2020.118477.

H. P. Nguyen et al., “The electric propulsion system as a green solution for management strategy of CO 2 emission in ocean shipping: A comprehensive review,†Int. Trans. Electr. Energy Syst., vol. 31, no. 11, Nov. 2021, doi: 10.1002/2050-7038.12580.

F. Di Natale and C. Carotenuto, “Particulate matter in marine diesel engines exhausts: Emissions and control strategies,†Transp. Res. Part D Transp. Environ., vol. 40, pp. 166–191, Oct. 2015, doi: 10.1016/j.trd.2015.08.011.

N. K. Vinayagam et al., “Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques,†J. Clean. Prod., vol. 306, p. 127310, Jul. 2021, doi: 10.1016/j.jclepro.2021.127310.

X. P. Nguyen, A. T. Hoang, A. I. Ölçer, and T. T. Huynh, “Record decline in global CO 2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies,†Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–4, Jan. 2021, doi: 10.1080/15567036.2021.1879969.

Z. Liu et al., “Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic,†Nat. Commun., vol. 11, no. 1, p. 5172, Dec. 2020, doi: 10.1038/s41467-020-18922-7.

A. T. Hoang, T. T. Huynh, X. P. Nguyen, T. K. T. Nguyen, and T. H. Le, “An analysis and review on the global NO2 emission during lockdowns in COVID-19 period,†Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–21, Mar. 2021, doi: 10.1080/15567036.2021.1902431.

K. Begum and M. Islam, “Natural fiber as a substitute to synthetic fiber in polymer composites: a review,†Res. J. Eng. Sci., vol. 2, no. 3, pp. 46–53, 2013.

F. M. . Coutinho and T. H. . Costa, “Performance of polypropylene–wood fiber composites,†Polym. Test., vol. 18, no. 8, pp. 581–587, Dec. 1999, doi: 10.1016/S0142-9418(98)00056-7.

D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,†Adv. Polym. Technol., vol. 18, no. 4, pp. 351–363, 1999, doi: 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X.

S. H. P. Bettini, A. T. Uliana, and D. Holzschuh, “Effect of process parameters and composition on mechanical, thermal, and morphological properties of polypropylene/sawdust composites,†J. Appl. Polym. Sci., vol. 108, no. 4, pp. 2233–2241, May 2008, doi: 10.1002/app.27867.

N. Venkateshwaran, A. ElayaPerumal, A. Alavudeen, and M. Thiruchitrambalam, “Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites,†Mater. Des., vol. 32, no. 7, pp. 4017–4021, Aug. 2011, doi: 10.1016/j.matdes.2011.03.002.

M. R. Sanjay, G. R. Arpitha, and B. Yogesha, “Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review,†Mater. Today Proc., vol. 2, no. 4–5, pp. 2959–2967, 2015, doi: 10.1016/j.matpr.2015.07.264.

M. JOHN and S. THOMAS, “Biofibres and biocomposites,†Carbohydr. Polym., vol. 71, no. 3, pp. 343–364, Feb. 2008, doi: 10.1016/j.carbpol.2007.05.040.

S. L. Fávaro, M. S. Lopes, A. G. Vieira de Carvalho Neto, R. Rogério de Santana, and E. Radovanovic, “Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites,†Compos. Part A Appl. Sci. Manuf., vol. 41, no. 1, pp. 154–160, Jan. 2010, doi: 10.1016/j.compositesa.2009.09.021.

Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, “Silane coupling agents used for natural fiber/polymer composites: A review,†Compos. Part A Appl. Sci. Manuf., vol. 41, no. 7, pp. 806–819, Jul. 2010, doi: 10.1016/j.compositesa.2010.03.005.

H. Alamri and I. M. Low, “Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites,†Polym. Test., vol. 31, no. 6, pp. 810–818, Sep. 2012, doi: 10.1016/j.polymertesting.2012.06.001.

T. Scalici, V. Fiore, and A. Valenza, “Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study,†Compos. Part B Eng., vol. 94, pp. 167–175, Jun. 2016, doi: 10.1016/j.compositesb.2016.03.053.

L. Yan, N. Chouw, L. Huang, and B. Kasal, “Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites,†Constr. Build. Mater., vol. 112, pp. 168–182, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.02.182.

M. Ardanuy, J. Claramunt, and R. D. Toledo Filho, “Cellulosic fiber reinforced cement-based composites: A review of recent research,†Constr. Build. Mater., vol. 79, pp. 115–128, Mar. 2015, doi: 10.1016/j.conbuildmat.2015.01.035.

H. U. Zaman and M. Beg, “Preparation, structure, and properties of the coir fiber/polypropylene composites,†J. Compos. Mater., vol. 48, no. 26, pp. 3293–3301, Nov. 2014, doi: 10.1177/0021998313508996.

K. G. Satyanarayana, K. Sukumaran, P. S. Mukherjee, C. Pavithran, and S. G. K. Pillai, “Natural fibre-polymer composites,†Cem. Concr. Compos., vol. 12, no. 2, pp. 117–136, Jan. 1990, doi: 10.1016/0958-9465(90)90049-4.

S. S. Munawar, K. Umemura, and S. Kawai, “Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles,†J. Wood Sci., vol. 53, no. 2, pp. 108–113, Apr. 2007, doi: 10.1007/s10086-006-0836-x.

C. Yu, “Natural Textile Fibres: Vegetable Fibres,†in Textiles and Fashion, Elsevier, 2015, pp. 29–56. doi: 10.1016/B978-1-84569-931-4.00002-7.

L. Zhang and Y. Hu, “Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers,†Mater. Des., vol. 55, pp. 19–26, Mar. 2014, doi: 10.1016/j.matdes.2013.09.066.

S. Mahzan, A. M. A. Zaidi, N. Arsat, M. N. M. Hatta, M. I. Ghazali, and S. R. Mohideen, “Study on sound absorption properties of coconut coir fibre reinforced composite with added recycled rubber,†Int. J. Integr. Eng., vol. 2, no. 1, 2010.

Ö. Andiç-Çakir, M. Sarikanat, H. B. Tüfekçi, C. Demirci, and Ü. H. Erdoğan, “Physical and mechanical properties of randomly oriented coir fiber–cementitious composites,†Compos. Part B Eng., vol. 61, pp. 49–54, May 2014, doi: 10.1016/j.compositesb.2014.01.029.

R. Siakeng, M. Jawaid, H. Ariffin, and M. S. Salit, “Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid,†J. Bionic Eng., vol. 15, no. 6, pp. 1035–1046, Nov. 2018, doi: 10.1007/s42235-018-0091-z.

L. Yan, S. Su, and N. Chouw, “Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites,†Compos. Part B Eng., vol. 80, pp. 343–354, Oct. 2015, doi: 10.1016/j.compositesb.2015.06.011.

M. Sakthivel and S. Ramesh, “Mechanical properties of natural fibre (banana, coir, sisal) polymer composites,†Sci. Park, vol. 1, no. 1, pp. 1–6, 2013.

S. Siddika, F. Mansura, M. Hasan, and A. Hassan, “Effect of reinforcement and chemical treatment of fiber on The Properties of jute-coir fiber reinforced hybrid polypropylene composites,†Fibers Polym., vol. 15, no. 5, pp. 1023–1028, May 2014, doi: 10.1007/s12221-014-1023-0.

V. G. Geethamma, R. Joseph, and S. Thomas, “Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment,†J. Appl. Polym. Sci., vol. 55, no. 4, pp. 583–594, Jan. 1995, doi: 10.1002/app.1995.070550405.

V. G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, “Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites,†Compos. Part A Appl. Sci. Manuf., vol. 36, no. 11, pp. 1499–1506, Nov. 2005, doi: 10.1016/j.compositesa.2005.03.004.

M. Arifur Rahman, F. Parvin, M. Hasan, and M. E. Hoque, “Introduction to Manufacturing of Natural Fibre-Reinforced Polymer Composites,†in Manufacturing of Natural Fibre Reinforced Polymer Composites, Cham: Springer International Publishing, 2015, pp. 17–43. doi: 10.1007/978-3-319-07944-8_2.

R. B. Yusoff, H. Takagi, and A. N. Nakagaito, “Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers,†Ind. Crops Prod., vol. 94, pp. 562–573, Dec. 2016, doi: 10.1016/j.indcrop.2016.09.017.

H. Essabir, M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss, “Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles,†Mech. Mater., vol. 93, pp. 134–144, Feb. 2016, doi: 10.1016/j.mechmat.2015.10.018.

M. M. Haque, M. S. Islam, and M. N. Islam, “Preparation and characterization of polypropylene composites reinforced with chemically treated coir,†J. Polym. Res., vol. 19, no. 5, p. 9847, May 2012, doi: 10.1007/s10965-012-9847-z.

S. S. Mir, N. Nafsin, M. Hasan, N. Hasan, and A. Hassan, “Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment,†Mater. Des., vol. 52, pp. 251–257, Dec. 2013, doi: 10.1016/j.matdes.2013.05.062.

P. Sudhakara et al., “Fabrication of Borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers,†Carbohydr. Polym., vol. 98, no. 1, pp. 1002–1010, Oct. 2013, doi: 10.1016/j.carbpol.2013.06.080.

S. K. Saw, G. Sarkhel, and A. Choudhury, “Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability,†Appl. Surf. Sci., vol. 257, no. 8, pp. 3763–3769, Feb. 2011, doi: 10.1016/j.apsusc.2010.11.136.

M. Hasan, M. E. Hoque, S. S. Mir, N. Saba, and S. M. Sapuan, “Manufacturing of Coir Fibre-Reinforced Polymer Composites by Hot Compression Technique,†in Manufacturing of Natural Fibre Reinforced Polymer Composites, Cham: Springer International Publishing, 2015, pp. 309–330. doi: 10.1007/978-3-319-07944-8_15.

Y. Dong, A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, and K.-T. Lau, “Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties,†Compos. Part A Appl. Sci. Manuf., vol. 63, pp. 76–84, Aug. 2014, doi: 10.1016/j.compositesa.2014.04.003.

R. K. Misra, S. Kumar, K. Sandeep, and A. Misra, “Some Experimental and Theoretical Investigations on Fire Retardant Coir/Epoxy Micro-Composites,†J. Thermoplast. Compos. Mater., vol. 21, no. 1, pp. 71–101, Jan. 2008, doi: 10.1177/0892705707084544.

S. K. Saw, G. Sarkhel, and A. Choudhury, “Preparation and characterization of chemically modified Jute-Coir hybrid fiber reinforced epoxy novolac composites,†J. Appl. Polym. Sci., vol. 125, no. 4, pp. 3038–3049, Aug. 2012, doi: 10.1002/app.36610.

V. K. Bhagat, S. Biswas, and J. Dehury, “Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites,†Polym. Compos., vol. 35, no. 5, pp. 925–930, May 2014, doi: 10.1002/pc.22736.

A. A. Pérez-Fonseca, M. Arellano, D. Rodrigue, R. González-Núñez, and J. R. Robledo-Ortíz, “Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites,†Polym. Compos., vol. 37, no. 10, pp. 3015–3024, Oct. 2016, doi: 10.1002/pc.23498.

D. O. Obada et al., “Effect of variation in frequencies on the viscoelastic properties of coir and coconut husk powder reinforced polymer composites,†J. King Saud Univ. - Eng. Sci., vol. 32, no. 2, pp. 148–157, Feb. 2020, doi: 10.1016/j.jksues.2018.10.001.

W. D. Callister, “An introduction: material science and engineering,†John Wiley Sons Inc, 2007.

N. A. S. Priya, P. V. Raju, and P. N. E. Naveen, “Experimental testing of polymer reinforced with coconut coir fiber composites,†Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 12, pp. 453–460, 2014.

J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, “The influence of fibre treatment on the performance of coir-polyester composites,†Compos. Sci. Technol., vol. 61, no. 9, pp. 1303–1310, Jul. 2001, doi: 10.1016/S0266-3538(01)00021-5.

D. Verma and P. C. Gope, “The use of coir/coconut fibers as reinforcements in composites,†in Biofiber Reinforcements in Composite Materials, Elsevier, 2015, pp. 285–319. doi: 10.1533/9781782421276.3.285.

M. R. Rahman, M. M. Huque, M. N. Islam, and M. Hasan, “Mechanical properties of polypropylene composites reinforced with chemically treated abaca,†Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 511–517, Apr. 2009, doi: 10.1016/j.compositesa.2009.01.013.

A. A. Morandim-Giannetti, J. A. M. Agnelli, B. Z. Lanças, R. Magnabosco, S. A. Casarin, and S. H. P. Bettini, “Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties,†Carbohydr. Polym., vol. 87, no. 4, pp. 2563–2568, Mar. 2012, doi: 10.1016/j.carbpol.2011.11.041.

E. S. Zainudin, L. H. Yan, W. H. Haniffah, M. Jawaid, and O. Y. Alothman, “Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites,†Polym. Compos., vol. 35, no. 7, pp. 1418–1425, Jul. 2014, doi: 10.1002/pc.22794.

M. M. Haque, M. Hasan, M. S. Islam, and M. E. Ali, “Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites,†Bioresour. Technol., vol. 100, no. 20, pp. 4903–4906, Oct. 2009, doi: 10.1016/j.biortech.2009.04.072.

F. S. da Luz, F. J. H. T. V. Ramos, L. F. C. Nascimento, A. B.-H. da S. Figueiredo, and S. N. Monteiro, “Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix,†J. Mater. Res. Technol., vol. 7, no. 4, pp. 528–534, Oct. 2018, doi: 10.1016/j.jmrt.2018.04.025.

A. Arbelaiz, B. Fernández, J. A. Ramos, A. Retegi, R. Llano-Ponte, and I. Mondragon, “Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling,†Compos. Sci. Technol., vol. 65, no. 10, pp. 1582–1592, Aug. 2005, doi: 10.1016/j.compscitech.2005.01.008.

D. Madyira and A. Kaymakci, “Mechanical characterization of coir epoxy composites and effect of processing methods on mechanical properties,†in COMA international conference on competitive manufacturing, 2016, pp. 187–192.

H. P. G. S. Júnior, F. P. D. Lopes, L. L. Costa, and S. N. Monteiro, “Mechanical properties of tensile tested coir fiber reinforced polyester composites,†Rev. Mater., vol. 15, no. 2, pp. 113–118, 2010.

H. Aireddy and S. C. Mishra, “Tribological behavior and mechanical properties of Bio-waste reinforced polymer matrix composites,†J. Metall. Mater. Sci., vol. 53, no. 2, pp. 139–152, 2011.

S. Jayabal and U. Natarajan, “Drilling analysis of coir-fibre-reinforced polyester composites,†Bull. Mater. Sci., vol. 34, no. 7, pp. 1563–1567, Dec. 2011, doi: 10.1007/s12034-011-0359-y.

I. Z. Bujang, M. K. Awang, and A. E. Ismail, “Study on the dynamic characteristic of coconut fibre reinforced composites,†in Regional conference on engineering mathematics, mechanics, manufacturing & architecture, 2007, pp. 185–202.

S. Dixit and P. Verma, “The Effect of Hybridization on Mechanical Behaviour of Coir/Sisal/Jute Fibres Reinforced Polyester Composite Material,†Res. J. Chem. Sci., vol. 2, no. 6, pp. 91–93, 2012.

S. N. Monteiro, F. P. D. Lopes, D. C. O. Nascimento, A. da Silva Ferreira, and K. G. Satyanarayana, “Processing and properties of continuous and aligned curaua fibers incorporated polyester composites,†J. Mater. Res. Technol., vol. 2, no. 1, pp. 2–9, Jan. 2013, doi: 10.1016/j.jmrt.2013.03.006.

M. BRAHMAKUMAR, C. PAVITHRAN, and R. PILLAI, “Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites,†Compos. Sci. Technol., vol. 65, no. 3–4, pp. 563–569, Mar. 2005, doi: 10.1016/j.compscitech.2004.09.020.

T. H. Nam, S. Ogihara, N. H. Tung, and S. Kobayashi, “Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites,†Compos. Part B Eng., vol. 42, no. 6, pp. 1648–1656, Sep. 2011, doi: 10.1016/j.compositesb.2011.04.001.

M. M. Rahman and M. A. Khan, “Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties,†Compos. Sci. Technol., vol. 67, no. 11–12, pp. 2369–2376, Sep. 2007, doi: 10.1016/j.compscitech.2007.01.009.

H. P. S. . Khalil, H. Ismail, H. . Rozman, and M. . Ahmad, “The effect of acetylation on interfacial shear strength between plant fibres and various matrices,†Eur. Polym. J., vol. 37, no. 5, pp. 1037–1045, May 2001, doi: 10.1016/S0014-3057(00)00199-3.

B. F. Yousif and H. Ku, “Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks,†Mater. Des., vol. 36, pp. 847–853, Apr. 2012, doi: 10.1016/j.matdes.2011.01.063.

N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, and R. H. White, “Coir fiber reinforced polypropylene composite panel for automotive interior applications,†Fibers Polym., vol. 12, no. 7, pp. 919–926, Oct. 2011, doi: 10.1007/s12221-011-0919-1.