Classification of Finger Movements Using EMG Signals with PSO SVM Algorithm

Daniel Sutopo Pamungkas (1), Sumantri K Risandriya (2), Adam Rahman (3)
(1) Electrical Departement Politeknik Negeri Batam, Batam, Indonesia
(2) Electrical Departement Politeknik Negeri Batam, Batam, Indonesia
(3) Electrical Departement Politeknik Negeri Batam, Batam, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Pamungkas, D. S., Risandriya, S. K., & Rahman, A. (2022). Classification of Finger Movements Using EMG Signals with PSO SVM Algorithm. International Journal of Advanced Science Computing and Engineering, 4(3), 210–219. https://doi.org/10.62527/ijasce.4.3.100
Electromyography (EMG) is a signal produced by human muscles when they contract or relax. This signal is widely used as a controller, for example, to control a robotic arm. This study aims to identify the pattern of finger movement in the form of finger movement using a bracelet-shaped device that has eight EMG sensors. This tool is placed on the lower right hand of a subject to get a signal from the EMG. This study uses the support vector machine (SVM) algorithm combined with the particle swarm optimization (PSO) method. For pattern recognition, the properties of the signal in the time domain are used. From this system, the success of pattern recognition is between 68% to 86%.

M. Dianatfar, J. Latokartano, and M. Lanz, "Review on existing VR/AR solutions in human-robot collaboration," Procedia CIRP, vol. 97, pp. 407–411, 2020, doi: 10.1016/J.PROCIR.2020.05.259.

S. K. Risandriya and D. S. Pamungkas, “Controlling hand robot using pattern recognition of finger movement,†J. Phys. Conf. Ser., vol. 1450, no. 1, Mar. 2020, doi: 10.1088/1742-6596/1450/1/012035.

W. Caesarendra, T. Tjahjowidodo, and D. Pamungkas, "EMG based classification of hand gestures using PCA and ANFIS," in Proceedings of the 2017 International Conference on Robotics, Biomimetics, and Intelligent Computational Systems, Robionetics 2017, 2017, vol. 2017-Decem. doi: 10.1109/ROBIONETICS.2017.8203430.

D. Andrean, D. S. Pamungkas, and S. K. Risandriya, "Controlling Robot Hand Using FFT as Input to the NN Algorithm," in Journal of Physics: Conference Series, 2019, vol. 1230, no. 1. doi: 10.1088/1742-6596/1230/1/012030.

D. S. Pamungkas, I. Simatupang, and S. K. Risandriya, “Comparison gestures recognition using k-NN and naïve bayes,†3rd Int. Conf. Appl. Sci. Technol. iCAST 2020, pp. 677–681, 2020, doi: 10.1109/ICAST51016.2020.9557730.

A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "A review of control methods for electric power wheelchairs based on electromyography signals with special emphasis on pattern recognition," IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 28, no. 4, pp. 316–326, Jul. 2011, doi: 10.4103/0256-4602.83552.

D. Pamungkas, S. R. Kurniawan, and B. F. Simamora, “Perbandingan Antara Domain Waktu dan Frekuensi untuk Pengenalan Sinyal EMG,†J. Rekayasa Elektr., vol. 17, no. 1, pp. 36–41, Mar. 2021, doi: 10.17529/JRE.V17I1.16844.

A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Feature reduction and selection for EMG signal classification," Expert Syst. Appl., vol. 39, no. 8, pp. 7420–7431, Jun. 2012, doi: 10.1016/J.ESWA.2012.01.102.

D. C. Toledo-Pérez, J. Rodríguez-Reséndiz, R. A. Gómez-Loenzo, and J. C. Jauregui-Correa, “Support Vector Machine-Based EMG Signal Classification Techniques: A Review,†Appl. Sci. 2019, Vol. 9, Page 4402, vol. 9, no. 20, p. 4402, Oct. 2019, doi: 10.3390/APP9204402.

M. Ariyanto et al., "Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor," Proc. 2015 Int. Conf. Autom. Cogn. Sci. Opt. Micro Electro-Mechanical Syst. Inf. Technol. ICACOMIT 2015, pp. 12–17, Mar. 2016, doi: 10.1109/ICACOMIT.2015.7440146.

W. Caesarendra and M. Irfan, "Classification Method of Hand Gestures Based on Support Vector Machine," Comput. Eng. Appl., vol. 7, no. 3, pp. 179–190, 2018.

D. S. Pamungkas and L. Sihombing, “Penggunaan Kernel SVM untuk Klasifikasi Pergerakan Jari Mengunakan Sinyal EMG,†J. Elektro dan Mesin Terap., vol. 07, no. 02, pp. 1–6, 2021.

F. Handayanna, “PREDIKSI PENYAKIT DIA BETES MELLITUS DENGAN METODE SUPPORT VECTOR MACHINE BERBASIS PARTICLE SWARM OPTIMIZATION,†J. Tek. Inform., vol. 2, no. 1, pp. 30–37, Sep. 2016, doi: 10.51998/JTI.V2I1.5.

S.-W. Fei, Y.-B. Miao, and C.-L. Liu, "Chinese Grain Production Forecasting Method Based on Particle Swarm Optimization-based Support Vector Machine," Recent Patents Eng., vol. 3, no. 1, pp. 8–12, Jan. 2009, doi: 10.2174/187221209787259947.

N. Musyafa and B. Rifai, “Model Support Vector Machine Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Liver,†J. Ilmu Pengetah. dan Teknol. Komput., vol. 3, no. 2, 2018.