Handoff Technique Using LoRaWAN Technology

Istas Pratomo Manalu (1), Marojahan Mula Timbul Sigiro (2), Eka Stephani Sinambela (3), Frengki Simatupang (4), Winda Kasih (5), Benni Tampubolon (6), Alexandro Hutabarat (7)
(1) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(2) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(3) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(4) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(5) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(6) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
(7) Computer Technology Department, Vocational Faculty, Institut Teknologi Del Toba, Indonesia
Fulltext View | Download
How to cite (IJASCE) :
Manalu, I. P., Sigiro , M. M. T., Sinambela , E. S., Simatupang , F., Kasih , W., Tampubolon , B., & Hutabarat , A. (2025). Handoff Technique Using LoRaWAN Technology. International Journal of Advanced Science Computing and Engineering, 7(2), 71–79. https://doi.org/10.62527/ijasce.7.2.247

This research introduces an innovative handoff methodology for LoRaWAN in IoT systems. This approach, validated through empirical testing, not only markedly enhances connection quality but also facilitates the system in selecting the optimal gateway, providing redundancy, verifying gateway availability prior to handoff, and managing handoff failures. Experimental evaluations were performed using two LoRa gateways (Arduino Nano and LoRa RFM95) and a single LoRa end device (comprising Arduino Nano, LoRa RFM95, MQ135 sensor, and OLED), during which the node transitioned between two positions (Gateway A and Gateway B) approximately 500 meters apart. Handoff was triggered when one RSSI value fell below the other. The experimental handoff threshold was established at an RSSI of -93 dB; exceeding this value resulted in the transmitter losing service from the gateway. During the experiment, the transmitter gradually moved from Gateway A to Gateway B over a period of 40 seconds. At the 20th second, a critical juncture was observed wherein the RSSI and SNR values of Gateway B gradually exceeded those of Gateway A. Gateway B recorded an RSSI of -92 dBm and an SNR of 4 dB, whereas Gateway A recorded an RSSI of -97 dBm and an SNR of 2 dB. This signifies that Gateway B exhibited superior signal quality. Based on a dynamic comparison of these parameters, the system effectively executed a handoff at the midpoint, thereby redirecting data transmission to the gateway with the higher link quality.

Y. Apriani, W. A. Oktaviani, and I. M. Sofian, "Vessel tracking system based LoRa SX1278," J. Ilmiah Tek. Elektro Komput. Informat. (JITEKI), vol. 9, no. 3, pp. 693–707, 2023, doi:10.26555/jiteki.v9i3.26385.

P. Spadaccino, F. G. Crinó, and F. Cuomo, "LoRaWAN behaviour analysis through dataset traffic investigation," Sensors, vol. 22, no. 7, p. 2470, Apr. 2022, doi: 10.3390/s22072470.

R. Agrawal, "Comparison of different mobile wireless technology (from 0G to 6G)," ECS Trans., vol. 107, no. 1, pp. 4799–4839, Apr. 2022, doi: 10.1149/10701.4799ecst.

G. Pasolini, "On the LoRa chirp spread spectrum modulation: Signal properties and their impact on transmitter and receiver architectures," IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 357–369, Jan. 2022, doi: 10.1109/TWC.2021.3095667.

P. J. Marcelis, N. Kouvelas, V. S. Rao, and R. V. Prasad, "DaRe: Data recovery through application layer coding for LoRaWAN," IEEE Trans. Mobile Comput., vol. 21, no. 3, pp. 895–910, Mar. 2022, doi: 10.1109/TMC.2020.3016654.

M. Alipio and M. Bures, "Current testing and performance evaluation methodologies of LoRa and LoRaWAN in IoT applications: Classification, issues, and future directives," Internet Things, vol. 25, p. 101053, Apr. 2024, doi: 10.1016/j.iot.2023.101053.

I. P. Manalu et al., "Performance analysis of LoRa in IoT application of suburban area," in Proc. 29th Int. Conf. Telecommun. (ICT), Porto, Portugal, Jul. 2023, pp. 1–6, doi: 10.1109/ICT60153.2023.10374037.

B. Miles, E. B. Bourennane, S. Boucherkha, and S. Chikhi, "A study of LoRaWAN protocol performance for IoT applications in smart agriculture," Comput. Commun., vol. 164, pp. 148–157, Dec. 2020, doi: 10.1016/j.comcom.2020.10.009.

R. Anzum et al., "A multiwall path-loss prediction model using 433 MHz LoRa-WAN frequency to characterize foliage's influence in a Malaysian palm oil plantation environment," Sensors, vol. 22, no. 14, p. 5397, Jul. 2022, doi: 10.3390/s22145397.

B. Citoni, F. Fioranelli, M. A. Imran, and Q. H. Abbasi, "Internet of Things and LoRaWAN-enabled future smart farming," IEEE Internet Things Mag., vol. 2, no. 4, pp. 14–19, Feb. 2020, doi:10.1109/IOTM.0001.1900043.

B. Dunlop, H. H. Nguyen, R. Barton, and J. Henry, "Interference analysis for LoRa chirp spread spectrum signals," in Proc. IEEE Can. Conf. Electr. Comput. Eng. (CCECE), Edmonton, AB, Canada, May 2019, pp. 1–4, doi: 10.1109/CCECE.2019.8861956.

C. Li and Z. Cao, "LoRa networking techniques for large-scale and long-term IoT: A down-to-top survey," ACM Comput. Surv., vol. 55, no. 3, pp. 1–36, Mar. 2023, doi: 10.1145/3494673.

Y. Liu et al., "High-performance long range-based medium access control layer protocol," Electronics, vol. 9, no. 8, p. 1273, Aug. 2020, doi: 10.3390/electronics9081273.

D. Zorbas, "Improving LoRaWAN downlink performance in the EU868 spectrum," Comput. Commun., vol. 195, pp. 303–314, Nov. 2022, doi: 10.1016/j.comcom.2022.09.001.

N. M. Obiri and H. Shikunzi, "Long-range wide area network (LoRa-WAN) connectivity and range evaluation in a rural setting," Int. J. Comput. Appl., vol. 185, no. 3, pp. 61–67, Apr. 2023, doi:10.5120/ijca2023922699.

F. A. Purnomo et al., "Empowering IoT connectivity with LoRa technology: A deep dive into long-range communication," Eng. Res. Express, vol. 7, no. 1, p. 015429, Mar. 2025, doi: 10.1088/2631-8695/adbfdd.

S. Terence et al., "Systematic review on Internet of Things in smart livestock management systems," Sustainability, vol. 16, no. 10, p. 4073, May 2024, doi: 10.3390/su16104073.

N. Cruz et al., "Extending LoRaWAN: Mesh architecture and performance analysis for long-range IoT connectivity in maritime environments," Systems, vol. 13, no. 5, p. 381, May 2025, doi:10.3390/systems13050381.

G. Czeczot, I. Rojek, and D. Mikołajewski, "Analysis of cyber security aspects of data transmission in large-scale networks based on the LoRaWAN protocol intended for monitoring critical infrastructure sensors," Electronics, vol. 12, no. 11, p. 2503, Jun. 2023, doi: 10.3390/electronics12112503.

S. Lee, J. Lee, H. S. Park, and J. K. Choi, "A novel fair and scalable relay control scheme for Internet of Things in LoRa-based low-power wide-area networks," IEEE Internet Things J., vol. 8, no. 7, pp. 5985–6001, Apr. 2021, doi: 10.1109/JIOT.2020.3034185.

J. Park, K. Park, H. Bae, and C. K. Kim, "EARN: Enhanced ADR with coding rate adaptation in LoRaWAN," IEEE Internet Things J., vol. 7, no. 12, pp. 11873–11883, Dec. 2020, doi:10.1109/JIOT.2020.3005881.

I. P. Manalu, F. Naibaho, E. Sri, L. Siahaan, and H. Hadi, "Analisa kinerja LoRa di bidang pertanian di Desa Sitoluama, Toba," Piston: J. Tek. Eng., vol. 6, no. 2, pp. 29–34, Feb. 2023, doi:10.32493/pjte.v6i2.28473.

I. P. Manalu et al., "LoRa communication design and performance test (case study: Air quality monitoring system)," in Proc. IEEE Int. Conf. Comput. Sci. Inf. Technol. (ICoSNIKOM), Medan, Indonesia, Oct. 2023, pp. 1–6, doi:10.1109/ICoSNIKOM60230.2023.10364454.

E. D. Widianto et al., "Simple LoRa protocol: Protokol komunikasi LoRa untuk sistem pemantauan multisensor," TELKA - Telekomun., Elektron., Komput. Kontrol, vol. 5, no. 2, pp. 83–92, Nov. 2019, doi:10.15575/telka.v5n2.83-92.

N. Noprianto, H. E. Dien, M. H. Ratsanjani, and M. A. Hendrawan, "Analysis of LoRa with LoRaWAN technology indoors in Polytechnic of Malang environment," SISTEMASI, vol. 13, no. 2, p. 698, Mar. 2024, doi: 10.32520/stmsi.v13i2.3884.

K. M. Awan et al., "Smart handoff technique for Internet of Vehicles communication using dynamic edge-backup node," Electronics, vol. 9, no. 3, p. 524, Mar. 2020, doi: 10.3390/electronics9030524.