Predicting Peer to Peer Lending Loan Risk Using Classification Approach
How to cite (IJASEIT) :
Pyle, D., Data Preparation for Data Mining, Morgan Kaufmann Publishers, 1999.
Provost, F. & Fawcett, T., Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking, O’Reilly (FV), 2013
Ferozi, Muhammad Nadeem, Loan Predictive Analysis, www.kaggle.com, 2018
Martinez Bachmann, Janio, Lending Club Risk Analysis and Metrics, www.kaggle.com, 2018
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. SMOTE: Synthetic Minority Oversampling TEchnique. Journal of Artificial Intelligence Research, 16:321–357, 2002
Maria Tsami, Giannis Adamos, Eftihia Nathanail, Evelina Budilovich BudiloviÄa, Irina Yatskiv Jackiva and Vissarion Magginas, A Decision Tree Approach for Achieving High Customer Satisfaction at Urban Interchanges, p 194-202, 2018
Xianyan Hou, P2P Borrower Default Identification and Prediction Based on RFE-Multiple Classification Models, 2020
KNIME; KNIME.com AG, Germany; http://www.knime.org/
Ryan Randy Suryono, and Indra Budi, P2P Lending Sentiment Analysis in Indonesian Online News, 2019
Maan Y Alsalem, Safwan O Hasoon, Predicting Bank Loan Risks Using Machine Learning Algorithm, J.of comp & math's Vol 14 No.1, 2020
Omer L. Gebizilioglu A. Belma Ozturkkal, Predictive Modelling and Expectable Loss Analysis for Borrower Defaults of Mortgage Loans, Journal of Modern Accounting and Auditing May 2018
Zoran Ereiz, Predicting Default Loan Using Machine learning, 2019.