Enhancement Support Vector Regression Using Black Widow Optimization for Predicting Foreign Exchange Rate
How to cite (IJASEIT) :
M. S. Islam, E. Hossain, A. Rahman, M. S. Hossain, and K. Andersson, “A Review on Recent Advancements in FOREX Currency Prediction,†pp. 1–23, 2020.
K. N. Arman, A. Saeed, W. Teh Ying, and D. C. L. Ngo, “Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment,†Expert Syst. Appl., vol. 42, no. 1, pp. 306–324, 2015.
F. Ferdiansyah, E. S. Negara, and Y. Widyanti, “Bitcoin-Usd Trading Using Svm To Detect the Current Day’S Trend in the Market,†J. Inf. Syst. Informatics, vol. 1, no. 1, pp. 70–77, 2019.
A. D. Arisandi and L. Atika, “Prediksi Mata Uang Bitcoin Menggunakan LSTM dan Analisis Sentimen pada Sosial Media Pendahuluan Metode Penelitian,†vol. 19, pp. 559–566, 2020.
E. S. Negara, K. Keni, and R. Andryani, “Data prediction for coffee harvest using least square method,†IOP Conf. Ser. Mater. Sci. Eng., vol. 1007, no. 1, 2020.
R. Amanda, H. Yasin, and A. Prahutama, “Analisis Support Vector Regression (SVR) Dalam Memprediksi Kurs Rupiah Terhadap Dollar Amerika Serikat,†vol. 3, pp. 849–857, 2014.
C. J. Lu, T. S. Lee, and C. C. Chiu, “Financial time series forecasting using independent component analysis and support vector regression,†Decis. Support Syst., vol. 47, no. 2, pp. 115–125, 2009.
M. Li and F. Suohai, “Forex prediction based on SVR optimized by artificial fish swarm algorithm,†Proc. - 2013 4th Glob. Congr. Intell. Syst. GCIS 2013, pp. 47–52, 2013.
K. Smets, B. Verdonk, and E. M. Jordaan, “Evaluation of performance measures for SVR hyperparameter selection,†IEEE Int. Conf. Neural Networks - Conf. Proc., pp. 637–642, 2007.
D. Pradeepkumar and V. Ravi, Soft computing hybrids for FOREX rate prediction: A comprehensive review, vol. 99. Elsevier Ltd, 2018.
M. E. Al Rivan and B. Bhagaskara, “Perbandingan Fluid Genetic Algorithm dan Genetic Algorithm untuk Penjadwalan Perkuliahan,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, p. 350, 2020.
V. Hayyolalam and A. A. Pourhaji Kazem, “Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems,†Eng. Appl. Artif. Intell., vol. 87, no. November 2018, p. 103249, 2020.
E. H. Houssein, B. E. din Helmy, D. Oliva, A. A. Elngar, and H. Shaban, “A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation,†Expert Syst. Appl., p. 114159, 2020.
D. C. Yıldırım, I. H. Toroslu, and U. Fiore, “Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators,†Financ. Innov., vol. 7, no. 1, pp. 1–36, 2021.
Y. C. Tsai, J. H. Chen, and J. J. Wang, “Predict forex trend via convolutional neural networks,†arXiv, 2018.
R. F. B. De Brito and A. L. I. Oliveira, “A foreign exchange market trading system by combining GHSOM and SVR,†Proc. Int. Jt. Conf. Neural Networks, pp. 10–15, 2012.
W. Gani, H. Taleb, and M. Limam, “Support vector regression based residual control charts,†J. Appl. Stat., vol. 37, no. 2, pp. 309–324, 2010.
M. F. Rohmah, I. K. G. D. Putra, R. S. Hartati, and L. Ardiantoro, “Comparison Four Kernels of SVR to Predict Consumer Price Index,†J. Phys. Conf. Ser., vol. 1737, no. 1, p. 012018, 2021.
M. Alida, M. Mustikasari, A. Info, R. B. Function, and S. V. Regression, “Rupiah Exchange Prediction of US Dollar Using Linear , Polynomial , and Radial Basis Function Kernel in Support Vector Regression,†vol. 5, no. 1, pp. 53–60, 2020.
K. Ito and R. Nakano, “Optimizing Support Vector Regression Hyperparameters Based on Cross-Validation,†Proc. Int. Jt. Conf. Neural Networks, vol. 3, pp. 2077–2082, 2003.
H. Yasin, A. Prahutama, and T. W. Utami, “Prediksi Harga Saham Menggunakan Support Vector Regression Dengan Algoritma Grid Search,†Media Stat., vol. 7, no. 1, pp. 29–35, 2014.
H. Yasin, R. E. Caraka, Tarno, and A. Hoyyi, “Prediction of crude oil prices using support vector regression (SVR) with grid search - Cross validation algorithm,†Glob. J. Pure Appl. Math., vol. 12, no. 4, pp. 3009–3020, 2016.
Q. Huang, J. Mao, and Y. Liu, “An improved grid search algorithm of SVR parameters optimization,†Int. Conf. Commun. Technol. Proceedings, ICCT, no. 2, pp. 1022–1026, 2012.
S. Huang, P. Chuang, C. Wu, and H. Lai, “Chaos-based support vector regressions for exchange rate forecasting,†Expert Syst. Appl., vol. 37, no. 12, pp. 8590–8598, 2010.
S. Pang, L. Song, and N. Kasabov, “Correlation-aided support vector regression for forex time series prediction,†Neural Comput. Appl., vol. 20, no. 8, pp. 1193–1203, 2011.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.