Improving the Performance of Rank Regression Using Fast Minimum Covariance Determinant in Estimating Weibull Distribution Parameters
How to cite (IJASCE) :
Outliers hurt the accuracy of life distribution parameters, including the Weibull distribution. Therefore, researchers have suggested employing the fast minimum covariance determinant method in rank regression estimators (which are robust but not efficient) to obtain robust estimators for the shape and scale parameters of the Weibull distribution. The proposed method is based on the robust means vector and the robust covariance matrix obtained from the fast minimum covariance determinant method, and it employs the rank regression estimation method, which depends on the ordinary least squares estimators of the simple linear regression model. The estimated parameters of the Weibull distribution obtained using the proposed technique have been compared with those derived from conventional maximum likelihood estimation and rank regression, using mean square error as the comparison metric, via both simulation and real data. The study's findings demonstrated the efficacy of the proposed strategy in addressing outliers and yielding highly effective estimators for the shape and scale parameters of the Weibull distribution.
T. H. Ali and J. R. Qadir, "Using wavelet shrinkage in the Cox proportional hazards regression model (simulation study)," Iraqi J. Stat. Sci., vol. 19, no. 1, pp. 17–29, 2022, doi:10.33899/iqjoss.2022.0174328.
M. S. R. M. S. Raza, T. H. A. T. H. Ali, and T. A. H. T. A. Hassan, "Using mixed distribution for gamma and exponential to estimate of survival function (brain stroke)," Polytech. J., vol. 8, no. 1, 2018, doi:10.25156/ptj.2018.8.1.120.
H. T. M. Ali and F. N. Abdulahad, "An application of Dirac's delta function in bivariate beta-gamma distribution," in Proc. 8th Int. Conf. Contemp. Inf. Technol. Math. (ICCITM), Mosul, Iraq, 2022, pp. 478–481, doi: 10.1109/ICCITM56309.2022.10031844.
K. Boudt, D. Caliskan, and C. Croux, "Robust explicit estimators of Weibull parameters," Metrika, vol. 73, no. 2, pp. 187–209, Mar. 2011, doi: 10.1007/s00184-009-0272-1.
V. H. Coria, S. Maximov, F. Rivas-Dávalos, and C. L. Melchor-Hernández, "Perturbative method for maximum likelihood estimation of the Weibull distribution parameters," SpringerPlus, vol. 5, no. 1, p. 1802, Dec. 2016, doi: 10.1186/s40064-016-3500-y.
S. K. Sinha, "Robust estimation in accelerated failure time models," Lifetime Data Anal., vol. 25, no. 1, pp. 52–78, Jan. 2019, doi: 10.1007/s10985-018-9421-z.
Z. Roohanizadeh, E. B. Jamkhaneh, and E. Deiri, "Parameters and reliability estimation for the Weibull distribution based on intuitionistic fuzzy lifetime data," Complex Intell. Syst., vol. 8, no. 6, pp. 4881–4896, Dec. 2022, doi: 10.1007/s40747-022-00720-x.
Y. M. Gómez et al., "An in-depth review of the Weibull model with a focus on various parameterizations," Mathematics, vol. 12, no. 1, p. 56, Dec. 2023, doi: 10.3390/math12010056.
M. Hubert, "An interview with Peter Rousseeuw," Int. Stat. Rev., vol. 93, no. 1, pp. 1–17, 2025, doi: 10.1111/insr.12587.
T. H. Ali, "Using proposed nonparametric regression models for clustered data (a simulation study)," J. Humanit. Sci., vol. 29, no. 2, pp. 78–87, 2017, doi: 10.21271/ZJPAS.29.2.8.
R. W. Butler, P. L. Davies, and M. Jhun, "Asymptotics for the minimum covariance determinant estimator," Ann. Stat., vol. 21, no. 3, pp. 1385–1400, 1993, doi: 10.1214/aos/1176349264.
T. H. Ali, B. S. Sedeeq, D. M. Saleh, and A. G. Rahim, "Robust multivariate quality control charts for enhanced variability monitoring," Qual. Reliab. Eng. Int., vol. 40, no. 3, pp. 1369–1381, Apr. 2024, doi: 10.1002/qre.3472.
C. Omar, T. H. Ali, and K. Hassn, "Using Bayes weights to remedy the heterogeneity problem of random error variance in linear models," Iraqi J. Stat. Sci., vol. 17, no. 2, pp. 58–67, 2020, doi:10.33899/iqjoss.2020.167391.
K. A. Murali, "Life data analysis reference," Reli. Corp. Worldw. Hqrs., Tucson, AZ, USA, 2016.
M. M. Al-Kassab and S. Ibrahim, "Using ridge regression to estimate factors affecting the number of births. A comparative study," in Advances in Artificial Intelligence, Software and Systems Engineering, Cham, Switzerland: Springer, 2023, pp. 183–194, doi:10.1007/978-981-99-0447-1_15.
D. J. Smith, Reliability Engineering. London, U.K.: Pitman, 1972.
N. S. Kareem, T. H. Ali, and A. M. Shahab, "De-noise data by using multivariate wavelets in the path analysis with application," Kirkuk Univ. J. Adm. Econ. Sci., vol. 10, no. 1, pp. 268–294, 2020, doi:10.32894/1913-010-001-012.
T. H. Ali, H. A. A.-M. Hayawi, and D. S. I. Botani, "Estimation of the bandwidth parameter in Nadaraya-Watson kernel non-parametric regression based on universal threshold level," Commun. Stat., Simul. Comput., vol. 52, no. 4, pp. 1476–1489, 2023, doi:10.1080/03610918.2021.1884719.
B. S. Sedeeq, Z. A. Muhammad, I. M. Ali, and T. H. Ali, "Construction robust T²-chart and compare it with Hotelling’s T²-chart," Zanco J. Hum. Sci., vol. 28, pp. 140–157, 2024.
T. H. Ali and D. M. Saleh, "Proposed hybrid method for wavelet shrinkage with robust multiple linear regression model: With simulation study," Qalaai Zanist Sci. J., vol. 7, no. 1, pp. 920–937, 2022, doi: 10.25212/lfu.qzj.7.1.36.
H. A. Taha, "Construction robust simple linear regression profile monitoring (A simulation study)," J. Kirkuk Univ. Adm. Econ. Sci., vol. 9, no. 1, 2019.
T. H. Ali, "Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study)," Commun. Stat., Simul. Comput., vol. 51, no. 2, pp. 391–403, 2022, doi:10.1080/03610918.2019.1652319.
D. C. Montgomery, Introduction to Statistical Quality Control, 8th ed. Hoboken, NJ, USA: Wiley, 2020.
T. H. Ali, N. H. S. Albarwari, and D. L. Ramadhan, "Using the hybrid proposed method for quantile regression and multivariate wavelet in estimating the linear model parameters," Iraqi J. Stat. Sci., vol. 20, no. 1, pp. 9–24, 2023, doi: 10.33899/iqjoss.2023.0178679.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.